Movement patterns and orientation mechanisms in garter snakes

Movements of animals presumably reflect their changing needs and the changing availability of necessary resources. In cold climates, snakes often make long seasonal migrations between hibernacula and summer habitats, Finding suitably deep hibernacula with minimal delay could be critical. I hypothesi...

Full description

Bibliographic Details
Main Author: Lawson, Peggy Margaret Ann
Other Authors: Gregory, Patrick T.
Format: Thesis
Language:English
Published: 1991
Subjects:
Online Access:https://dspace.library.uvic.ca//handle/1828/9499
Description
Summary:Movements of animals presumably reflect their changing needs and the changing availability of necessary resources. In cold climates, snakes often make long seasonal migrations between hibernacula and summer habitats, Finding suitably deep hibernacula with minimal delay could be critical. I hypothesized that such animals should have highly developed navigational ability. By contrast, snakes living in mild climates can hibernate in shallow sites and probably do not migrate; if so, they might be expected to show poorly developed orientation mechanisms!. The objectives of this study were to determine movement patterns and navigational ability of garter snakes (Thamnophis) living in a mild climate and compare them with a congeneric population known to be migratory. From 1986 - 1988 I examined, using mark-recapture, movement behaviour of two populations of garter snakes at Spectacle Lake Provincial Park (SLPP) on Vancouver Island, British Columbia, focusing on several components typically associated with migratory behaviour - distances travelled, population directionality, fidelity to seasonal sites, distinctness of seasonal habitats, and route directness. Thamnophis sirtalis, the common garter snake, is the most widely distributed North American snake species and high latitude populations are migratory. Thamnophis ordinoides, the northwestern garter snake, is restricted to the Pacific northwest and migratory behaviour has never been reported. Both species displayed combinations of traits clearly suggesting nonmigratory behaviour. These included short-distance (< 500 m), random movements, a lack of den fidelity, and variation in the maintenance of specific home ranges between successive years. Home ranges overlapped between individuals, averaged less than 0.3 ha measured over a single active season, and were not clearly distinct from denning areas. Although some directionality of movement was evident, it was likely related to foraging strategy and unlike the typical unidirectional movements undertaken by migrating ...