Managing human footprint with respect to its effects on large mammals: implications of spatial scale, divergent responses and ecological thresholds

The environmental problems facing the world today are largely attributable to anthropogenic activities and landscape change. Addressing these challenges in an evidence-based way requires an understanding of precisely how species and ecosystems are responding to human impacts. Discerning linkages bet...

Full description

Bibliographic Details
Main Author: Toews, Mary
Other Authors: Juanes, Francis, Burton, A. Cole
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/1828/7586
Description
Summary:The environmental problems facing the world today are largely attributable to anthropogenic activities and landscape change. Addressing these challenges in an evidence-based way requires an understanding of precisely how species and ecosystems are responding to human impacts. Discerning linkages between stressors and their ecological repercussions, and using this to inform conservation, can be challenging due to the complexity and uncertainty of ecological research. I focused on the responses of five wide-ranging large mammal species – gray wolf (Canis lupus), Canada lynx (Lynx canadensis), coyote (Canis latrans), white-tailed deer (Odocoileus virginianus) and moose (Alces alces) – to human footprint (measure of human infrastructure and landscape change), using 12 years (2001-2013) of snowtrack surveys conducted across the boreal forest of Alberta. I explored three key challenges to discerning the linkages between ecological dynamics and management actions. First, I asked whether the direction and magnitude of species responses vary depending on the spatial extent and grain of the study. Second, I asked whether these species respond more strongly to individual footprint features or to the cumulative effects of footprint (measured as total footprint), and whether responses to footprint are consistent across species. Third, I evaluated the utility of thresholds for large mammal management and asked whether there is evidence for consistent threshold responses to total footprint across scales. In addressing the first two questions, I evaluated a set of generalized linear mixed effects models (GLMM) relating the relative abundance of each species to individual and cumulative effects of human footprint, using an information-theoretic approach. I compared the direction of species responses across our regional study area (approximately 400,000 km2) to those reported in previous smaller-extent studies (median 1,525 km2), and compared responses across three spatial grains (250m, 1500m, and 5000m transect buffers). In ...