Effects of climate variability and change on surface water storage within the hydroclimatic regime of the Athabasca River, Alberta, Canada

Warmer air temperatures projected for the mid-21st century under climate change are expected to translate to increased evaporation and a re-distribution of precipitation around the world, including in the mid-latitude, continental Athabasca River region in northern Alberta, Canada. This study examin...

Full description

Bibliographic Details
Main Author: Walker, Gillian Sarah
Other Authors: Prowse, Terry Donald
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/1828/7253
Description
Summary:Warmer air temperatures projected for the mid-21st century under climate change are expected to translate to increased evaporation and a re-distribution of precipitation around the world, including in the mid-latitude, continental Athabasca River region in northern Alberta, Canada. This study examines how these projected changes will affect the water balance of various lake sizes. A thermodynamic lake model, MyLake, is used to determine evaporation over three theoretical lake basins – a shallow lake, representative of perched basins in the Peace-Athabasca Delta near Fort Chipewyan; an intermediate-depth lake representative of industrial water storage near Fort McMurray; and a deep lake representative of future off-stream storage of water by industry, also near Fort McMurray. Bias-corrected climate data from an ensemble of Regional Climate Models are incorporated in MyLake, and the water balance is completed by calculating the change in storage as the difference between precipitation and evaporation. Results indicate that evaporation and precipitation are projected to increase in the future by similar magnitudes, thus not significantly changing the long-term water balance of the lakes. However, intra-annual precipitation and evaporation patterns are projected to shift within the year, changing seasonal water level cycles, and the magnitudes and frequencies of extreme 1-, 3- and 5-day weather events are projected to increase. These results demonstrate that future climate change adaptation and mitigation strategies should take into account increases in intra-annual variability and extreme events on water levels of lakes in mid-latitude, interior hydroclimatic regimes. Graduate 0368 walkerg@uvic.ca