Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra

International audience The effective thermal conductivity of snow, k eff , is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamor...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Domine, F, Barrere, M, Sarrazin, D, Morin, Samuel, Arnaud, L
Other Authors: Takuvik Joint International Laboratory ULAVAL-CNRS, Université Laval Québec (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre for Northern Studies - Université Laval, Université Laval Québec (ULaval), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Imperial College London, Department of Geography, Météo-France, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://insu.hal.science/insu-01235680
https://insu.hal.science/insu-01235680/document
https://insu.hal.science/insu-01235680/file/CRYOSPHERE-Automatic%20monitoring%20of%20the%20effective%20thermal%20conductivity%20of%20snow%20in%20a%20low-Arctic%20shrub%20tundra.pdf
https://doi.org/10.5194/tc-9-1265-2015
id ftutoulouse3hal:oai:HAL:insu-01235680v1
record_format openpolar
institution Open Polar
collection Université Toulouse III - Paul Sabatier: HAL-UPS
op_collection_id ftutoulouse3hal
language English
topic [SDE]Environmental Sciences
spellingShingle [SDE]Environmental Sciences
Domine, F
Barrere, M
Sarrazin, D
Morin, Samuel
Arnaud, L
Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra
topic_facet [SDE]Environmental Sciences
description International audience The effective thermal conductivity of snow, k eff , is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low-Arctic shrub tundra near Umiujaq, Quebec, (N56 • 34 W76 • 29) and monitored automatically the evolution of k eff for two consecutive winters, 2012–2013 and 2013–2014, at four heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of k eff from the heating curves and obtain 404 k eff values. We evaluate possible errors and biases associated with the use of the heated needles. The time evolution of k eff is very different for both winters. This is explained by comparing the meteorological conditions in both winters , which induced different conditions for snow metamor-phism. In particular, important melting events in the second year increased snow hardness, impeding subsequent densifi-cation and increase in thermal conductivity. We conclude that shrubs have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevent snow compaction, and therefore k eff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.
author2 Takuvik Joint International Laboratory ULAVAL-CNRS
Université Laval Québec (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Centre for Northern Studies - Université Laval
Université Laval Québec (ULaval)
Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Observatoire des Sciences de l'Univers de Grenoble (OSUG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Imperial College London
Department of Geography
Météo-France
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Domine, F
Barrere, M
Sarrazin, D
Morin, Samuel
Arnaud, L
author_facet Domine, F
Barrere, M
Sarrazin, D
Morin, Samuel
Arnaud, L
author_sort Domine, F
title Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra
title_short Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra
title_full Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra
title_fullStr Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra
title_full_unstemmed Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra
title_sort automatic monitoring of the effective thermal conductivity of snow in a low-arctic shrub tundra
publisher HAL CCSD
publishDate 2015
url https://insu.hal.science/insu-01235680
https://insu.hal.science/insu-01235680/document
https://insu.hal.science/insu-01235680/file/CRYOSPHERE-Automatic%20monitoring%20of%20the%20effective%20thermal%20conductivity%20of%20snow%20in%20a%20low-Arctic%20shrub%20tundra.pdf
https://doi.org/10.5194/tc-9-1265-2015
genre Arctic
Arctic
Dwarf birch
permafrost
The Cryosphere
The Cryosphere Discussions
Tundra
Umiujaq
genre_facet Arctic
Arctic
Dwarf birch
permafrost
The Cryosphere
The Cryosphere Discussions
Tundra
Umiujaq
op_source ISSN: 1994-0432
EISSN: 1994-0440
The Cryosphere Discussions
https://insu.hal.science/insu-01235680
The Cryosphere Discussions, 2015, 9, pp.1265-1276. ⟨10.5194/tc-9-1265-2015⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-9-1265-2015
insu-01235680
https://insu.hal.science/insu-01235680
https://insu.hal.science/insu-01235680/document
https://insu.hal.science/insu-01235680/file/CRYOSPHERE-Automatic%20monitoring%20of%20the%20effective%20thermal%20conductivity%20of%20snow%20in%20a%20low-Arctic%20shrub%20tundra.pdf
doi:10.5194/tc-9-1265-2015
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/tc-9-1265-2015
container_title The Cryosphere
container_volume 9
container_issue 3
container_start_page 1265
op_container_end_page 1276
_version_ 1797575180511346688
spelling ftutoulouse3hal:oai:HAL:insu-01235680v1 2024-04-28T08:04:38+00:00 Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra Domine, F Barrere, M Sarrazin, D Morin, Samuel Arnaud, L Takuvik Joint International Laboratory ULAVAL-CNRS Université Laval Québec (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Centre for Northern Studies - Université Laval Université Laval Québec (ULaval) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) Imperial College London Department of Geography Météo-France Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) 2015-06 https://insu.hal.science/insu-01235680 https://insu.hal.science/insu-01235680/document https://insu.hal.science/insu-01235680/file/CRYOSPHERE-Automatic%20monitoring%20of%20the%20effective%20thermal%20conductivity%20of%20snow%20in%20a%20low-Arctic%20shrub%20tundra.pdf https://doi.org/10.5194/tc-9-1265-2015 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-9-1265-2015 insu-01235680 https://insu.hal.science/insu-01235680 https://insu.hal.science/insu-01235680/document https://insu.hal.science/insu-01235680/file/CRYOSPHERE-Automatic%20monitoring%20of%20the%20effective%20thermal%20conductivity%20of%20snow%20in%20a%20low-Arctic%20shrub%20tundra.pdf doi:10.5194/tc-9-1265-2015 info:eu-repo/semantics/OpenAccess ISSN: 1994-0432 EISSN: 1994-0440 The Cryosphere Discussions https://insu.hal.science/insu-01235680 The Cryosphere Discussions, 2015, 9, pp.1265-1276. ⟨10.5194/tc-9-1265-2015⟩ [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2015 ftutoulouse3hal https://doi.org/10.5194/tc-9-1265-2015 2024-04-11T00:31:21Z International audience The effective thermal conductivity of snow, k eff , is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low-Arctic shrub tundra near Umiujaq, Quebec, (N56 • 34 W76 • 29) and monitored automatically the evolution of k eff for two consecutive winters, 2012–2013 and 2013–2014, at four heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of k eff from the heating curves and obtain 404 k eff values. We evaluate possible errors and biases associated with the use of the heated needles. The time evolution of k eff is very different for both winters. This is explained by comparing the meteorological conditions in both winters , which induced different conditions for snow metamor-phism. In particular, important melting events in the second year increased snow hardness, impeding subsequent densifi-cation and increase in thermal conductivity. We conclude that shrubs have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevent snow compaction, and therefore k eff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow. Article in Journal/Newspaper Arctic Arctic Dwarf birch permafrost The Cryosphere The Cryosphere Discussions Tundra Umiujaq Université Toulouse III - Paul Sabatier: HAL-UPS The Cryosphere 9 3 1265 1276