Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra

International audience The effective thermal conductivity of snow, k eff , is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamor...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Domine, F, Barrere, M, Sarrazin, D, Morin, Samuel, Arnaud, L
Other Authors: Takuvik Joint International Laboratory ULAVAL-CNRS, Université Laval Québec (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre for Northern Studies - Université Laval, Université Laval Québec (ULaval), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Imperial College London, Department of Geography, Météo-France, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://insu.hal.science/insu-01235680
https://insu.hal.science/insu-01235680/document
https://insu.hal.science/insu-01235680/file/CRYOSPHERE-Automatic%20monitoring%20of%20the%20effective%20thermal%20conductivity%20of%20snow%20in%20a%20low-Arctic%20shrub%20tundra.pdf
https://doi.org/10.5194/tc-9-1265-2015
Description
Summary:International audience The effective thermal conductivity of snow, k eff , is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low-Arctic shrub tundra near Umiujaq, Quebec, (N56 • 34 W76 • 29) and monitored automatically the evolution of k eff for two consecutive winters, 2012–2013 and 2013–2014, at four heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of k eff from the heating curves and obtain 404 k eff values. We evaluate possible errors and biases associated with the use of the heated needles. The time evolution of k eff is very different for both winters. This is explained by comparing the meteorological conditions in both winters , which induced different conditions for snow metamor-phism. In particular, important melting events in the second year increased snow hardness, impeding subsequent densifi-cation and increase in thermal conductivity. We conclude that shrubs have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevent snow compaction, and therefore k eff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.