Disposition of genistein in rainbow trout (Oncorhynchus mykiss) and siberian sturgeon (Acipenser baeri)

International audience Genistein (G) is a xenoestrogen from soy present in fish diet. In vivo, a 50-fold difference in sensitivity to genistein on vitellogenin (VTG) synthesis was found when comparing trout and sturgeon. This difference was not linked to the estrogen receptor affinity nor to the sen...

Full description

Bibliographic Details
Published in:General and Comparative Endocrinology
Main Authors: Gontier-Latonnelle, K., Cravedi, Jean Pierre, Laurentie, Michel, Perdu, Elisabeth, Lamothe, V., Le Menn, F., Bennetau-Pelissero, C.
Other Authors: École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB), Xénobiotiques, Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT), Agence Française de Sécurité Sanitaire des Aliments (AFSSA), Nutrition, Aquaculture et Génomique (NUAGE), Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2007
Subjects:
Online Access:https://hal.inrae.fr/hal-02662482
https://doi.org/10.1016/j.ygcen.2006.10.001
Description
Summary:International audience Genistein (G) is a xenoestrogen from soy present in fish diet. In vivo, a 50-fold difference in sensitivity to genistein on vitellogenin (VTG) synthesis was found when comparing trout and sturgeon. This difference was not linked to the estrogen receptor affinity nor to the sensitivity of induction of the VTG pathway. The study was performed to check if differences in the G disposition in the two species could explain their difference of sensitivity to G. A pharmacokinetic analysis of radiolabeled G was performed to determine its bioavailability and metabolism in both species. G was used at levels corresponding to fish farm exposure. G plasma levels after chronic ingestion were found to be 15.6 times higher in sturgeon than in trout. Sturgeon primarily produces sulfate conjugates after G ingestion whereas trout mainly produces glucuronides. Sturgeon was able to excrete orobol glucuronide in bile. An important first pass effect was suggested in both species. No accumulation of G or its metabolites was observed in the two species. Trout muscles accounted only for 0.14 of radioactivity 48 h post-ingestion similarly to sturgeon. Trout viscera accounted for 15% of the radioactivity 48 h post-ingestion. In sturgeon, 48 h post-ingestion, viscera accounted for 21.5% of the radioactivity. These rates decreased rapidly thereafter. The study partly explains the difference in sensitivity to G, previously recorded between the two species. In addition, it shows that human exposure to G through farmed fish consumption is negligible