Large-scale aircraft observations of ultra-fine and fine particle concentrations in the remote Siberian troposphere: New particle formation studies

International audience Ultra-fine particle number concentrations were measured over Siberia during two large-scale airborne measurement campaigns in April and September 2006. During both campaigns, an aircraft flew between Novosibirsk and Yakutsk, collecting every 200 km vertical profiles up to 7 km...

Full description

Bibliographic Details
Published in:Atmospheric Environment
Main Authors: Paris, Jean-Daniel, Arshinov, Mikhail Yu., Ciais, Philippe, Belan, Boris, Nédélec, Philippe
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), V.E. Zuev Institute of Atmospheric Optics (IAO), Siberian Branch of the Russian Academy of Sciences (SB RAS), ICOS-ATC (ICOS-ATC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Laboratory of Theoretical Spectroscopy Tomsk (LTS), Siberian Branch of the Russian Academy of Sciences (SB RAS)-Siberian Branch of the Russian Academy of Sciences (SB RAS), Laboratoire d'aérologie (LAERO), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2009
Subjects:
Online Access:https://hal.science/hal-00519670
https://hal.science/hal-00519670/document
https://hal.science/hal-00519670/file/Paris2009.pdf
https://doi.org/10.1016/j.atmosenv.2008.11.032
Description
Summary:International audience Ultra-fine particle number concentrations were measured over Siberia during two large-scale airborne measurement campaigns in April and September 2006. During both campaigns, an aircraft flew between Novosibirsk and Yakutsk, collecting every 200 km vertical profiles up to 7 km. This dataset was completed by 5 years of monthly profiles above Novosibirsk. Particle number concentration was measured in the size ranges 3–70 and 70–200 nm, along with other tracers. Free troposphere (FT) particle concentrations (N3–200) varied between 60 and 460 cm−3, inferior to boundary layer concentrations (100–7000 cm−3). In April, high concentrations of not, vert, similar500 cm−3 were observed in a polluted air mass recently uplifted at 5–6 km altitude over eastern Siberia, with no sign of significant new particle formation. In September, particle concentrations decreased with altitude, but with a steeper gradient in N70–200 compared to N3–70, the latter accounting for 90% of the total particle concentration in the free troposphere at 6–7 km altitude. Because ultra-fine particles presumably have short lifetimes, these observed particles could have been formed in situ in the clean Siberian atmosphere. Two cases of possible nucleation with high concentration and N3–70/N70–200 ratios are reported for the September campaign, in the upper troposphere and in cloud outflow in the mid-troposphere. In the seasonal analysis, a FT N3–70 maximum is found in July–August between 6 and 7 km altitude, with N3–70 accounting for not, vert, similar90% of N3–200 supporting the hypothesis of in situ formation in the FT. A secondary FT maximum of N3–70 was identified later in autumn. In the boundary layer, seasonally maximum N3–70 concentrations were found over Novosibirsk in May and September, but not in summer, possibly due to scavenging by precipitations and a large condensational sink from biomass burning aerosols. Our dataset has a limited size resolution and no speciation capability; more investigation is thus required to ...