Gas Exchange and Water Relations of Two Alpine and Two Arctic Tundra Plant Species

Although water stress is an important selective force in many environments, it is not commonly considered to be of particular importance in tundra areas. Even though large portions of tundra may have an abundance of water, other more exposed areas may become quite dry. This microsite variability wit...

Full description

Bibliographic Details
Main Author: Johnson, Douglas Allan
Format: Text
Language:unknown
Published: DigitalCommons@USU 1975
Subjects:
Online Access:https://digitalcommons.usu.edu/etd/6307
https://doi.org/10.26076/89ac-e5f0
https://digitalcommons.usu.edu/context/etd/article/7368/viewcontent/1975_Johnson_Douglas.pdf
Description
Summary:Although water stress is an important selective force in many environments, it is not commonly considered to be of particular importance in tundra areas. Even though large portions of tundra may have an abundance of water, other more exposed areas may become quite dry. This microsite variability with respect to moisture stress was reflected in soil water potential measurements obtained from an alpine tundra area on Niwot Ridge in Colorado. Even though soil water potentials were consistently above -5 bars in a relatively low lying Deschampsia meadow, soil water potentials from an exposed fellfield area were often as low as -15 bars. Since moisture stress affects a number of important physiological processes in plants and since moisture stress may develop in at least some tundra areas, this study was undertaken to determine whether the sensitivity of plant physiological processes to water stress may be one important contributing factor in determining the microsite distribution of different tundra species. The alpine tundra species examined in this study were Deschampsia caespitosa which is typically found in wet meadow habitats and Geum rossii, a species which ranges from wet meadow to exposed fellfield habitats. The arctic tundra species investigated were Dupontia fischeri which is restricted mainly to wet meadow areas and Carex aquatilis, a species ranging from wet meadows to drier, more exposed areas. For both the arctic and al pine tundra species, though the photosynthetic capacities of the tundra species restricted mainly to wet meadow areas were higher under conditions of low moisture stress, the wider ranging tundra species were able to maintain greater photosynthetic capacity as soil moisture stress increased. Although the depression of photosynthesis with water stress in these tundra species could be partially attributed to reduced stomatal aperture, with decreased soil water potential most of the decline of photosynthesis was due to a greater non-stomatal or residual resistance, indicating a direct ...