Concentrations, Gas-Particle Distributions, and Source Indicator Analysis of Brominated Flame Retardants in Air at Toolik Lake, Arctic Alaska.

Brominated flame-retardants (BFRs) can be released from consumer products, resulting in accumulation in the surrounding environment and/or long-range transport to remote environments. We evaluated concentration changes in a suite of BFRs, including 13 polybrominated diphenyl ethers (PBDEs) and 1,2-b...

Full description

Bibliographic Details
Main Authors: Davie-Martin, Cleo L., Hageman, Kimberly J., Chin, Yu-Ping, Nistor, Benjamin J., Hung, Hayley
Other Authors: Royal Society of Chemistry
Format: Text
Language:unknown
Published: Hosted by Utah State University Libraries 2016
Subjects:
Online Access:https://digitalcommons.usu.edu/chem_facpub/772
Description
Summary:Brominated flame-retardants (BFRs) can be released from consumer products, resulting in accumulation in the surrounding environment and/or long-range transport to remote environments. We evaluated concentration changes in a suite of BFRs, including 13 polybrominated diphenyl ethers (PBDEs) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), in air at Toolik Lake, Arctic Alaska during the Northern Hemisphere summer of 2013. A high-volume active air sampler was used to collect 2 day integrated samples at the field station and three flow-through air samplers were used to collect 18 day integrated samples along a transect extending away from the field station. The BDE congeners associated with the penta-BDE commercial mixture (BDE-47, -99, and -100) were the most frequently detected BFRs and were found at concentrations consistent with those reported at other Arctic sites. Gas–particle distributions were influenced by temperature and correlations between gas-phase concentrations and temperature suggested that either volatilization from local sources or re-emission from secondary sources (that is, re-volatilization of BFRs that had migrated northwards from distant sources) was important for the lower-brominated BFRs during the warmer months. Source indicator analysis suggested no single dominant geographic source of BFRs while results from the flow-through samplers indicated that the field station itself was not a significant source of BFRs.