Measuring Ocean Acidification: New Technology for a New Era of Ocean Chemistry

Human additions of carbon dioxide to the atmosphere are creating a cascade of chemical consequences that will eventually extend to the bottom of all the world’s oceans. Among the best-documented seawater effects are a worldwide increase in open-ocean acidity and large-scale declines in calcium carbo...

Full description

Bibliographic Details
Published in:Environmental Science & Technology
Main Author: Byrne, Robert H.
Format: Article in Journal/Newspaper
Language:unknown
Published: Digital Commons @ University of South Florida 2014
Subjects:
Online Access:https://digitalcommons.usf.edu/msc_facpub/1650
https://doi.org/10.1021/es405819p
Description
Summary:Human additions of carbon dioxide to the atmosphere are creating a cascade of chemical consequences that will eventually extend to the bottom of all the world’s oceans. Among the best-documented seawater effects are a worldwide increase in open-ocean acidity and large-scale declines in calcium carbonate saturation states. The susceptibility of some young, fast-growing calcareous organisms to adverse impacts highlights the potential for biological and economic consequences. Many important aspects of seawater CO2 chemistry can be only indirectly observed at present, and important but difficult-to-observe changes can include shifts in the speciation and possibly bioavailability of some life-essential elements. Innovation and invention are urgently needed to develop the in situ instrumentation required to document this era of rapid ocean evolution.