Response of the Miliolid Archaias angulatus to Simulated Ocean Acidification

A common, but not universal, effect of ocean acidification on benthic foraminifera is a reduction in the growth rate. The miliolid Archaias angulatus is a high-Mg (>4 mole% MgCO3), symbiont-bearing, soritid benthic foraminifer that contributes to Caribbean reef carbonate sediments. A laboratory c...

Full description

Bibliographic Details
Published in:The Journal of Foraminiferal Research
Main Authors: Knorr, Paul O., Robbins, Lisa L., Harries, Peter J., Hallock, Pamela, Wynn, Jonathan G
Format: Article in Journal/Newspaper
Language:unknown
Published: Digital Commons @ University of South Florida 2014
Subjects:
Online Access:https://digitalcommons.usf.edu/geo_facpub/1020
https://doi.org/10.2113/gsjfr.45.2.109
Description
Summary:A common, but not universal, effect of ocean acidification on benthic foraminifera is a reduction in the growth rate. The miliolid Archaias angulatus is a high-Mg (>4 mole% MgCO3), symbiont-bearing, soritid benthic foraminifer that contributes to Caribbean reef carbonate sediments. A laboratory culture study assessed the effects of reduced pH on the growth of A. angulatus. We observed a statistically significant 50% reduction in the growth rate (p < 0.01), calculated from changes in maximum diameter, from 160 μm/28 days in the pH 8.0/pCO2air 480 ppm control group to 80 μm/28 days at a treatment level of pH 7.6/pCO2air 1328 ppm. Additionally, pseudopore area, δ18O values, and Mg/Ca ratio all increased, albeit slightly in the latter two variables. The reduction in growth rate indicates that under a high-CO2 setting, future A. angulatus populations will consist of smaller adults. A model using the results of this study estimates that at pH 7.6 A. angulatus carbonate production in the South Florida reef tract and Florida Bay decreases by 85%, from 0.27 Mt/yr to 0.04 Mt/yr, over an area of 9,000 km2.