Ecophysiology of Oxygen Supply in Cephalopods

Cephalopods are an important component of many marine ecosystems and support large fisheries. Their active lifestyles and complex behaviors are thought to be driven in large part by competition with fishes. Although cephalopods appear to compete successfully with fishes, a number of their important...

Full description

Bibliographic Details
Main Author: Birk, Matthew A.
Format: Doctoral or Postdoctoral Thesis
Language:unknown
Published: Digital Commons @ University of South Florida 2018
Subjects:
Online Access:https://digitalcommons.usf.edu/etd/7265
https://digitalcommons.usf.edu/context/etd/article/8462/viewcontent/Birk_usf_0206D_14844.pdf
Description
Summary:Cephalopods are an important component of many marine ecosystems and support large fisheries. Their active lifestyles and complex behaviors are thought to be driven in large part by competition with fishes. Although cephalopods appear to compete successfully with fishes, a number of their important physiological traits are arguably inferior, such as an inefficient mode of locomotion via jet propulsion and a phylogenetically limited means of blood-borne gas transport. In active shallow-water cephalopods, these traits result in an interesting combination of very high oxygen demand and limited oxygen supply. The ability to maintain active lifestyles despite these metabolic constraints makes cephalopods a fascinating subject for metabolic physiology. This dissertation focuses on the physiological adaptations that allow coleoid cephalopods to maintain a balance of oxygen supply and demand in a variety of environmental conditions. A critical component of understanding oxygen supply in any animal is knowing the means of oxygen delivery from the environment to the mitochondria. Squids are thought to obtain a fairly large portion of their oxygen via simple diffusion across the skin in addition to uptake at the gills. Although this hypothesis has support from indirect evidence and is widely accepted, no empirical examinations have been conducted to assess the validity of this hypothesis. In Chapter 2, I examined cutaneous respiration in two squid species, Doryteuthis pealeii and Lolliguncula brevis, by using a divided chamber to physically separate the mantle cavity and gills from the outer mantle surface. I measured the oxygen consumption rate in the two compartments and found that, at rest, squids only obtain enough oxygen cutaneously to meet demand of the skin tissue locally (12% of total). The majority of oxygen is obtained via the traditional branchial pathway. In light of these findings, I re-examine and discuss the indirect evidence that has supported the cutaneous respiration hypothesis. Ocean acidification is ...