Brood ecology and population dynamics of King Eiders

Birth and death processes and the extent of dispersal directly affect population dynamics. Knowledge of ecological factors that influence these processes provides insight into natural selection and understanding about changes in population size. King eiders (Somateria spectabilis) breed across the a...

Full description

Bibliographic Details
Main Author: Mehl, Katherine Rose
Other Authors: Alisauskas, Ray T., Plante, Yves, Forsyth, George W., Cooch, Evan, Clark, Robert G., Bortolotti, Gary R.
Format: Thesis
Language:English
Published: 2004
Subjects:
Online Access:http://hdl.handle.net/10388/etd-07132004-133640
Description
Summary:Birth and death processes and the extent of dispersal directly affect population dynamics. Knowledge of ecological factors that influence these processes provides insight into natural selection and understanding about changes in population size. King eiders (Somateria spectabilis) breed across the arctic region of North America and winter in polar oceanic waters of the western and eastern regions of the continent. Here I studied a local population of King Eiders at Karrak Lake, Nunavut, where I used analysis of naturally-occurring stable isotopes (13C, 15N) from feathers, in conjunction with banding data, to investigate the extent of dispersal among winter areas and the influence of winter area on subsequent breeding. In addition, I used capture-mark-recapture methods to (1) investigate the relative contributions of survival and recruitment probabilities to local population dynamics, and (2) to test hypotheses about the influence of specific ecological factors on those probabilities or their components, e.g., nest success, duckling survival. Isotopic data suggested that female King Eiders were not strongly philopatric to wintering areas between years. Individuals that wintered in western seas initiated nests earlier and had slightly larger clutch sizes during early nest initiation relative to females that wintered in the east. Female condition during incubation did not vary by winter area. Female King Eiders of known breeding age were at least 3-years-old before their first breeding attempt. Age of first successful breeding attempt did not appear to be influenced by body size. However, after reaching breeding age, larger females apparently experienced greater breeding propensity. Adult survival rate (1996-2002) was estimated as 0.87 and recapture probabilities varied with time and ranged from 0.31 to 0.67. There is no evidence of survival advantages related to larger size. Population growth for this local study area was high, estimated at 20%/year with larger females contributing more to the population growth ...