A Comparative Assessment of the Distribution of Joule Heating in Altitude as Estimated in TIE-GCM and EISCAT Over One Solar Cycle

During geomagnetically active times, Joule (or frictional) heating in the Lower Thermosphere-Ionosphere is a significant source of thermal energy, greatly affecting density, temperature, composition and circulation. At the same time, Joule heating and the associated Pedersen conductivity are amongst...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics
Main Authors: Baloukidis, D., Sarris, T., Tourgaidis, S., Pirnaris, P., Aikio, A., Virtanen, I., Buchert, Stephan, Papadakis, K.
Format: Article in Journal/Newspaper
Language:English
Published: Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen 2023
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-519559
https://doi.org/10.1029/2023JA031526
Description
Summary:During geomagnetically active times, Joule (or frictional) heating in the Lower Thermosphere-Ionosphere is a significant source of thermal energy, greatly affecting density, temperature, composition and circulation. At the same time, Joule heating and the associated Pedersen conductivity are amongst the least known parameters in the upper atmosphere in terms of their quantification and spatial distribution, and their parameterization by geomagnetic parameters shows large discrepancies between estimation methodologies, primarily due to a lack of comprehensive measurements in the region where they maximize. In this work we perform a long-term statistical comparison of Joule heating as calculated by the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) and as obtained through radar measurements by the European Incoherent Scatter Scientific Association (EISCAT). Statistical estimates of Joule heating and Pedersen conductivity are obtained from a simulation run over the 11 year period spanning from 2009 until 2019 and from radar measurements over the same period, during times of radar measurements. The results are statistically compared in different Magnetic Local Time sectors and Kp level ranges in terms of median values and percentiles of altitude profiles. It is found that Joule heating and Pedersen conductivity are higher on average in TIE-GCM than in EISCAT for low Kp and are lower than EISCAT for high Kp. It is also found that neutral winds cannot account for the discrepancies between TIE-GCM and EISCAT. Comparisons point toward the need for a Kp-dependent parameterization of Joule heating in TIE-GCM to account for the contribution of small scale effects. During times of high solar activity, Joule (or frictional) heating in the Lower Thermosphere-Ionosphere is a significant source of thermal energy, greatly affecting density, temperature, composition and circulation. Joule heating is largely unknown, due to a lack of measurements in the altitude ranges where it maximizes. In this ...