Searching for High-Energy Neutrinos from Core-Collapse Supernovae with IceCube

IceCube is a cubic kilometer neutrino detector array in the Antarctic ice that was designed to search for astrophysical, high-energy neutrinos. It has detected a diffuse flux of astrophysical neutrinos that appears to be of extragalactic origin. A possible contribution to this diffuse flux could ste...

Full description

Bibliographic Details
Published in:Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)
Main Authors: Abbasi, R., Botner, Olga, Burgman, Alexander, Glaser, Christian, Hallgren, Allan, O'Sullivan, Erin, Pérez de los Heros, Carlos, Sharma, Ankur, Valtonen-Mattila, Nora, Zhang, Z.
Format: Conference Object
Language:English
Published: Uppsala universitet, Högenergifysik 2022
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-518594
https://doi.org/10.22323/1.395.1116
Description
Summary:IceCube is a cubic kilometer neutrino detector array in the Antarctic ice that was designed to search for astrophysical, high-energy neutrinos. It has detected a diffuse flux of astrophysical neutrinos that appears to be of extragalactic origin. A possible contribution to this diffuse flux could stem from core-collapse supernovae. The high-energy neutrinos could either come from the interaction of the ejecta with a dense circumstellar medium or a jet, emanating from the star's core, that stalls in the star's envelope. Here, we will present results of a stacking analysis to search for this high-energy neutrino emission from core-collapse supernovae using 7 years of nu(mu) track events from IceCube. For complete list of authors see https://doi.org/10.22323/1.395.1116