Direction Reconstruction using a CNN for GeV-Scale Neutrinos in IceCube

The IceCube Neutrino Observatory observes neutrinos interacting deep within the South Pole ice. It consists of 5,160 digital optical modules, which are embedded within a cubic kilometer of ice, over depths of 1,450m to 2,450 m. At the lower center of the array is the DeepCore subdetector. Its denser...

Full description

Bibliographic Details
Published in:Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)
Main Authors: Abbasi, R., Botner, Olga, Burgman, Alexander, Glaser, Christian, Hallgren, Allan, O'Sullivan, Erin, Pérez de los Heros, Carlos, Sharma, Ankur, Valtonen-Mattila, Nora, Zhang, Z.
Format: Conference Object
Language:English
Published: Uppsala universitet, Högenergifysik 2022
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-518511
https://doi.org/10.22323/1.395.1054
Description
Summary:The IceCube Neutrino Observatory observes neutrinos interacting deep within the South Pole ice. It consists of 5,160 digital optical modules, which are embedded within a cubic kilometer of ice, over depths of 1,450m to 2,450 m. At the lower center of the array is the DeepCore subdetector. Its denser sensor configuration lowers the observable energy threshold to the GeV-scale, facilitating the study of atmospheric neutrino oscillations. The precise reconstruction of neutrino direction is critical in the measurements of oscillation parameters. This work presents a method to reconstruct the zenith angle of GeV-scale events in IceCube by using a convolutional neural network and compares the result to that of the current likelihood-based reconstruction algorithm. For complete list of authors see http://dx.doi.org/10.22323/1.395.1054