Breeding System Evolution and Pollination Success in the Wind-Pollinated Herb Plantago maritima

In this thesis, I examined variation in sex expression and mating patterns in the sexually polymorphic, wind-pollinated herb Plantago maritima. With a combination of field studies, greenhouse experiments, and genetic analyses, I (a) examined factors influencing sex ratio variation in gynodioecious p...

Full description

Bibliographic Details
Main Author: Nilsson, Emil
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Uppsala universitet, Institutionen för ekologi och evolution 2005
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4790
Description
Summary:In this thesis, I examined variation in sex expression and mating patterns in the sexually polymorphic, wind-pollinated herb Plantago maritima. With a combination of field studies, greenhouse experiments, and genetic analyses, I (a) examined factors influencing sex ratio variation in gynodioecious plants (in which hermaphrodites and females coexist), (b) discovered variation in breeding system, (c) investigated density-dependence of seed production, and (d) documented genetic variation within and among populations close to the northern range margin in Europe. In a survey of 104 P. maritima populations, I documented considerable variation in sex ratio (range 0-70% females, median 6.3% females). As predicted, females were more frequently missing from small than from large populations, and the variance in sex ratio increased with decreasing population size. Among twelve populations sampled for seed production, the frequency of females was positively related to relative fecundity of females and negatively related to population size. The results suggest that the local sex ratio is influenced both by the relative fecundity of females and hermaphrodites, and by stochastic processes in small populations. A comparative field study showed that plant fecundity decreased with increasing distance to nearest pollen donor both within and among populations in an archipelago in southern Sweden, where self-incompatibility was confirmed in controlled crosses. In contrast, plant fecundity was overall higher and was not density-dependent in the Skeppsvik archipelago in northern Sweden, where controlled crosses showed that plants are self-compatible. The results were consistent with the prediction that evolution of self-fertility should reduce density-dependence of pollination success. I quantified the genetic structure within and among populations from eastern Sweden and western Finland based on variation at four polymorphic microsatellite loci. The genetic diversity was low in northern Sweden, which may be the result of a history ...