Perspectives on future Alzheimer therapies : amyloid-beta protofibrils - a new target for immunotherapy with BAN2401 in Alzheimer's disease

The symptomatic drugs currently on the market for Alzheimer's disease (AD) have no effect on disease progression, and this creates a large unmet medical need. The type of drug that has developed most rapidly in the last decade is immunotherapy: vaccines and, especially, passive vaccination with...

Full description

Bibliographic Details
Published in:Alzheimer's Research & Therapy
Main Authors: Lannfelt, Lars, Moller, Christer, Basun, Hans, Osswald, Gunilla, Sehlin, Dag, Satlin, Andrew, Logovinsky, Veronika, Gellerfors, Par
Format: Article in Journal/Newspaper
Language:English
Published: Uppsala universitet, Geriatrik 2014
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-231496
https://doi.org/10.1186/alzrt246
Description
Summary:The symptomatic drugs currently on the market for Alzheimer's disease (AD) have no effect on disease progression, and this creates a large unmet medical need. The type of drug that has developed most rapidly in the last decade is immunotherapy: vaccines and, especially, passive vaccination with monoclonal antibodies. Antibodies are attractive drugs as they can be made highly specific for their target and often with few side effects. Data from recent clinical AD trials indicate that a treatment effect by immunotherapy is possible, providing hope for a new generation of drugs. The first anti-amyloid-beta (anti-A beta) vaccine developed by Elan, AN1792, was halted in phase 2 because of aseptic meningoencephalitis. However, in a follow-up study, patients with antibody response to the vaccine demonstrated reduced cognitive decline, supporting the hypothesis that A beta immunotherapy may have clinically relevant effects. Bapineuzumab (Elan/Pfizer Inc./Johnson & Johnson), a monoclonal antibody targeting fibrillar A beta, was stopped because the desired clinical effect was not seen. Solanezumab (Eli Lilly and Company) was developed to target soluble, monomeric A beta. In two phase 3 studies, Solanezumab did not meet primary endpoints. When data from the two studies were pooled, a positive pattern emerged, revealing a significant slowing of cognitive decline in the subgroup of mild AD. The Arctic mutation has been shown to specifically increase the formation of soluble A beta protofibrils, an A beta species shown to be toxic to neurons and likely to be present in all cases of AD. A monoclonal antibody, mAb158, was developed to target A beta protofibrils with high selectivity. It has at least a 1,000-fold higher selectivity for protofibrils as compared with monomers of A beta, thus targeting the toxic species of the peptide. A humanized version of mAb158, BAN2401, has now entered a clinical phase 2b trial in a collaboration between BioArctic Neuroscience and Eisai without the safety concerns seen in previous phase 1 ...