Evaluation of native Earth system model output with ESMValTool v2.6.0

Earth system models (ESMs) are state-of-the-art climate models that allow numerical simulations of the past, present-day, and future climate. To extend our understanding of the Earth system and improve climate change projections, the complexity of ESMs heavily increased over the last decades. As a c...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: Schlund, Manuel, Hassler, Birgit, Lauer, Axel, Andela, Bouwe, Jöckel, Patrick, Loosveldt Tomas, Saskia, Vegas Regidor, Javier
Other Authors: Barcelona Supercomputing Center
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2023
Subjects:
Online Access:http://hdl.handle.net/2117/383655
https://doi.org/10.5194/gmd-16-315-2023
Description
Summary:Earth system models (ESMs) are state-of-the-art climate models that allow numerical simulations of the past, present-day, and future climate. To extend our understanding of the Earth system and improve climate change projections, the complexity of ESMs heavily increased over the last decades. As a consequence, the amount and volume of data provided by ESMs has increased considerably. Innovative tools for a comprehensive model evaluation and analysis are required to assess the performance of these increasingly complex ESMs against observations or reanalyses. One of these tools is the Earth System Model Evaluation Tool (ESMValTool), a community diagnostic and performance metrics tool for the evaluation of ESMs. Input data for ESMValTool needs to be formatted according to the CMOR (Climate Model Output Rewriter) standard, a process that is usually referred to as “CMORization”. While this is a quasi-standard for large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP), this complicates the application of ESMValTool to non-CMOR-compliant climate model output. In this paper, we describe an extension of ESMValTool introduced in v2.6.0 that allows seamless reading and processing of “native” climate model output, i.e., operational output produced by running the climate model through the standard workflow of the corresponding modeling institute. This is achieved by an extension of ESMValTool's preprocessing pipeline that performs a CMOR-like reformatting of the native model output during runtime. Thus, the rich collection of diagnostics provided by ESMValTool is now fully available for these models. For models that use unstructured grids, a further preprocessing step required to apply many common diagnostics is regridding to a regular latitude–longitude grid. Extensions to ESMValTool's regridding functions described here allow for more flexible interpolation schemes that can be used on unstructured grids. Currently, ESMValTool supports nearest-neighbor, bilinear, and first-order ...