Robust but weak winter atmospheric circulation response to future Arctic sea ice loss

The possibility that Arctic sea ice loss weakens mid-latitude westerlies, promoting more severe cold winters, has sparked more than a decade of scientific debate, with apparent support from observations but inconclusive modelling evidence. Here we show that sixteen models contributing to the Polar A...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: Smith, Doug M., Eade, Rosie, Andrews, M. B., Ayres, Holly, Clark, A., Levine, Xavier, Ortega Montilla, Pablo
Other Authors: Barcelona Supercomputing Center
Format: Article in Journal/Newspaper
Language:English
Published: Nature Research 2022
Subjects:
Online Access:http://hdl.handle.net/2117/363693
https://doi.org/10.1038/s41467-022-28283-y
Description
Summary:The possibility that Arctic sea ice loss weakens mid-latitude westerlies, promoting more severe cold winters, has sparked more than a decade of scientific debate, with apparent support from observations but inconclusive modelling evidence. Here we show that sixteen models contributing to the Polar Amplification Model Intercomparison Project simulate a weakening of mid-latitude westerlies in response to projected Arctic sea ice loss. We develop an emergent constraint based on eddy feedback, which is 1.2 to 3 times too weak in the models, suggesting that the real-world weakening lies towards the higher end of the model simulations. Still, the modelled response to Arctic sea ice loss is weak: the North Atlantic Oscillation response is similar in magnitude and offsets the projected response to increased greenhouse gases, but would only account for around 10% of variations in individual years. We further find that relationships between Arctic sea ice and atmospheric circulation have weakened recently in observations and are no longer inconsistent with those in models. D.M.S., R.E., L.H., L.S.G., T.J., T.S., X.L., and P.O. were supported by the EU H2020 APPLICATE project (GA727862). The Met Office contribution was also supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra and by the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund. J.A.S was supported by NERC grants NE/P006760/1, NE/R005125/1 and NE/V005855/1. G.M and Y.P. were supported by the US Department of Energy, grant number DE-SC0019407. L.S.G was also supported by the Research council of Norway INES project (270061), and the Norwegian e-infrastructure for Research and Education (UNINETT Sigma2) through projects NN2345K, NS2345K and NS9034K. E.M. and D.M. acknowledge the support of the German Federal Ministry of Education and Research through the JPI Climate/JPI Oceans NextG-Climate Science-ROADMAP (FKZ: 01LP2002A) project and of the European Union’s Horizon 2020 Programme through the Blue-Action Project (GA727852); and the use of resources from the DKRZ bm0966 and bm1190 projects. C. Deser acknowledges support from the National Center for Atmospheric Research, which is a major facility sponsored by the US National Science Foundation under cooperative agreement 1852977. M.M. was supported by MEXT through the Integrated Research Program for Advancing Climate Models (JPMXD0717935457) and ArCS II (JPMXD1420318865) programs, and by the Environment Research and Technology Development Fund (JPMEERF20192004). J.G.-S. and P.O. were supported by the Spanish Ramón y Cajal’ programme (RYC-2016-21181, RYC-2016-22772). B.H. was jointly funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19070404) and the National Natural Science Foundation of China (Grant Nos. 42030602, 91837101). G.G. was supported by the EU H2020 Blue–Action (GA727852) project and uses the HPC resources of TGCC under the allocations 2018-R0040110492 and 2019-A0060107732 made by GENCI. J.S. acknowledges the project L4 of the Collaborative Research Centre TRR 181 Energy Transfers in Atmosphere and Ocean funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Project 274762653. Peer Reviewed "Article signat per 31 autors/es: D. M. Smith, R. Eade, M. B. Andrews, H. Ayres, A. Clark, S. Chripko, C. Deser, N. J. Dunstone, J. García-Serrano, G. Gastineau, L. S. Graff, S. C. Hardiman, B. He, L. Hermanson, T. Jung, J. Knight, X. Levine, G. Magnusdottir, E. Manzini, D. Matei, M. Mori, R. Msadek, P. Ortega, Y. Peings, A. A. Scaife, J. A. Screen, M. Seabrook, T. Semmler, M. Sigmond, J. Streffing, L. Sun & A. Walsh " Postprint (published version)