Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 Earth system model

The Arctic is warming 2 to 3 times faster than the global average, partly due to changes in short-lived climate forcers (SLCFs) including aerosols. In order to study the effects of atmospheric aerosols in this warming, recent past (1990–2014) and future (2015–2050) simulations have been carried out...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Im, Ulas, Tsigaridis, Kostas, Faluvegi, Gregory, Langen, Peter L., French, Joshua P., Mahmood, Rashed, Thomas, Manu A., Salzen, Knut von, Thomas, Daniel C., Whaley, Cynthia H., Klimont, Zbigniew, Skov, Henrik, Brandt, Jørgen
Other Authors: Barcelona Supercomputing Center
Format: Article in Journal/Newspaper
Language:English
Published: European Geosciences Union 2021
Subjects:
Online Access:http://hdl.handle.net/2117/349808
https://doi.org/10.5194/acp-21-10413-2021
Description
Summary:The Arctic is warming 2 to 3 times faster than the global average, partly due to changes in short-lived climate forcers (SLCFs) including aerosols. In order to study the effects of atmospheric aerosols in this warming, recent past (1990–2014) and future (2015–2050) simulations have been carried out using the GISS-E2.1 Earth system model to study the aerosol burdens and their radiative and climate impacts over the Arctic (>60∘ N), using anthropogenic emissions from the Eclipse V6b and the Coupled Model Intercomparison Project Phase 6 (CMIP6) databases, while global annual mean greenhouse gas concentrations were prescribed and kept fixed in all simulations. Results showed that the simulations have underestimated observed surface aerosol levels, in particular black carbon (BC) and sulfate (SO2−4), by more than 50 %, with the smallest biases calculated for the atmosphere-only simulations, where winds are nudged to reanalysis data. CMIP6 simulations performed slightly better in reproducing the observed surface aerosol concentrations and climate parameters, compared to the Eclipse simulations. In addition, simulations where atmosphere and ocean are fully coupled had slightly smaller biases in aerosol levels compared to atmosphere-only simulations without nudging. Arctic BC, organic aerosol (OA), and SO2−4 burdens decrease significantly in all simulations by 10 %–60 % following the reductions of 7 %–78 % in emission projections, with the Eclipse ensemble showing larger reductions in Arctic aerosol burdens compared to the CMIP6 ensemble. For the 2030–2050 period, the Eclipse ensemble simulated a radiative forcing due to aerosol–radiation interactions (RFARI) of −0.39±0.01 W m−2, which is −0.08 W m−2 larger than the 1990–2010 mean forcing (−0.32 W m−2), of which −0.24±0.01 W m−2 was attributed to the anthropogenic aerosols. The CMIP6 ensemble simulated a RFARI of −0.35 to −0.40 W m−2 for the same period, which is −0.01 to −0.06 W m−2 larger than the 1990–2010 mean forcing of −0.35 W m−2. The scenarios with little to no mitigation (worst-case scenarios) led to very small changes in the RFARI, while scenarios with medium to large emission mitigations led to increases in the negative RFARI, mainly due to the decrease in the positive BC forcing and the decrease in the negative SO2−4 forcing. The anthropogenic aerosols accounted for −0.24 to −0.26 W m−2 of the net RFARI in 2030–2050 period, in Eclipse and CMIP6 ensembles, respectively. Finally, all simulations showed an increase in the Arctic surface air temperatures throughout the simulation period. By 2050, surface air temperatures are projected to increase by 2.4 to 2.6 ∘C in the Eclipse ensemble and 1.9 to 2.6 ∘C in the CMIP6 ensemble, compared to the 1990–2010 mean. Overall, results show that even the scenarios with largest emission reductions leads to similar impact on the future Arctic surface air temperatures and sea-ice extent compared to scenarios with smaller emission reductions, implying reductions of greenhouse emissions are still necessary to mitigate climate change. This research has been supported by the Aarhus University Interdisciplinary Centre for Climate Change (iClimate) OH fund (no. 2020-0162731), the FREYA project funded by the Nordic Council of Ministers (grant agreement nos. MST-227-00036 and MFVM-2019-13476), and the EVAM-SLCF funded by the Danish Environmental Agency (grant agreement no. MST-112-00298). Kostas Tsigaridis and Gregory Faluvegi thank the NASA Modeling, Analysis and Prediction program (MAP) for support. Zbigniew Klimont was financially supported by the EU-funded Action on Black Carbon in the Arctic (EUA-BCA) under the EU Partnership Instrument. Joshua P. French was partially supported by NSF award 1915277. Peer Reviewed Postprint (published version)