The first complete inventory of the local glaciers and ice caps on Greenland
Glacier inventories provide essential baseline information for the determination of water resources, glacier-specific changes in area and volume, climate change impacts as well as past, potential and future contribution of glaciers to sea-level rise. Although Greenland is heavily glacierised and thu...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | https://risweb.st-andrews.ac.uk/portal/en/researchoutput/the-first-complete-inventory-of-the-local-glaciers-and-ice-caps-on-greenland(72441ee3-e31b-48dd-a9fc-b70ad65122b4).html https://doi.org/10.5194/tc-6-1483-2012 http://www.scopus.com/inward/record.url?scp=84870925016&partnerID=8YFLogxK |
Summary: | Glacier inventories provide essential baseline information for the determination of water resources, glacier-specific changes in area and volume, climate change impacts as well as past, potential and future contribution of glaciers to sea-level rise. Although Greenland is heavily glacierised and thus highly relevant for all of the above points, a complete inventory of its glaciers was not available so far. Here we present the results and details of a new and complete inventory that has been compiled from more than 70 Landsat scenes (mostly acquired between 1999 and 2002) using semi-automated glacier mapping techniques. A digital elevation model (DEM) was used to derive drainage divides from watershed analysis and topographic attributes for each glacier entity. To serve the needs of different user communities, we assigned to each glacier one of three connectivity levels with the ice sheet (CL0, CL1, CL2; i.e. no, weak, and strong connection) to clearly, but still flexibly, distinguish the local glaciers and ice caps (GIC) from the ice sheet and its outlet glaciers. In total, we mapped ∼ 20 300 glaciers larger than 0.05 km 2 (of which ∼ 900 are marine terminating), covering an area of 130 076 ± 4032 km 2 , or 89 720 ± 2781 km 2 without the CL2 GIC. The latter value is about 50% higher than the mean value of more recent previous estimates. Glaciers smaller than 0.5 km 2 contribute only 1.5% to the total area but more than 50% (11 000) to the total number. In contrast, the 25 largest GIC (> 500 km 2 ) contribute 28% to the total area, but only 0.1% to the total number. The mean elevation of the GIC is 1700 m in the eastern sector and around 1000 m otherwise. The median elevation increases with distance from the coast, but has only a weak dependence on mean glacier aspect. |
---|