Past, present, and future geo-biosphere interactions on the Tibetan Plateau and implications for permafrost

Interactions between the atmosphere, biosphere, cryosphere, hydrosphere, and geosphere are most active in the critical zone, a region extending from the tops of trees to the top of unweathered bedrock. Changes in one or more of these spheres can result in a cascade of changes throughout the system i...

Full description

Bibliographic Details
Published in:Earth-Science Reviews
Main Authors: Ehlers, T.A., Chen, D., Appel, E., Bolch, T., Chen, F., Diekmann, B., Dippold, M.A., Giese, M., Guggenberger, G., Lai, H.-W., Li, X., Liu, J., Liu, Y., Ma, Y., Miehe, G., Mosbrugger, V., Mulch, A., Piao, S., Schwalb, A., Thompson, L.G., Su, Z., Sun, H., Yao, T., Yang, X., Yang, K., Zhu, L.
Format: Article in Journal/Newspaper
Language:English
Published: 2022
Subjects:
Online Access:https://research-portal.st-andrews.ac.uk/en/researchoutput/past-present-and-future-geobiosphere-interactions-on-the-tibetan-plateau-and-implications-for-permafrost(4f00afc2-b679-4798-8076-65e161770058).html
https://doi.org/10.1016/j.earscirev.2022.104197
https://research-repository.st-andrews.ac.uk/bitstream/10023/26367/1/Ehlers_2022_ESR_Past_present_future_CC.pdf
Description
Summary:Interactions between the atmosphere, biosphere, cryosphere, hydrosphere, and geosphere are most active in the critical zone, a region extending from the tops of trees to the top of unweathered bedrock. Changes in one or more of these spheres can result in a cascade of changes throughout the system in ways that are often poorly understood. Here we investigate how past and present climate change have impacted permafrost, hydrology, and ecosystems on the Tibetan Plateau. We do this by compiling existing climate, hydrologic, cryosphere, biosphere, and geologic studies documenting change over decadal to glacial-interglacial timescales and longer. Our emphasis is on showing present-day trends in environmental change and how plateau ecosystems have largely flourished under warmer and wetter periods in the geologic past. We identify two future pathways that could lead to either a favorable greening or unfavorable degradation and desiccation of plateau ecosystems. Both paths are plausible given the available evidence. We contend that the key to which pathway future generations experience lies in what, if any, human intervention measures are implemented. We conclude with suggested management strategies that can be implemented to facilitate a future greening of the Tibetan Plateau.