Biogeography and phylogenetics of the planktonic foraminifera

The planktonic foraminifera are a highly abundant and diverse group of marine pelagic protists that are ubiquitously distributed throughout the worlds’ oceans. These unicellular eukaryotes are encased in a calcareous (CaCO3) shell or ‘test’, the morphology of which is used to identify individual ‘mo...

Full description

Bibliographic Details
Main Author: Seears, Heidi
Format: Thesis
Language:English
Published: 2011
Subjects:
Online Access:http://eprints.nottingham.ac.uk/11879/
https://eprints.nottingham.ac.uk/11879/1/Heidi_Seears_PhD_thesis.pdf
https://eprints.nottingham.ac.uk/11879/2/Appendix_9.7.1_to_9.7.8.pdf
https://eprints.nottingham.ac.uk/11879/3/Appendix_9.7.9.pdf
Description
Summary:The planktonic foraminifera are a highly abundant and diverse group of marine pelagic protists that are ubiquitously distributed throughout the worlds’ oceans. These unicellular eukaryotes are encased in a calcareous (CaCO3) shell or ‘test’, the morphology of which is used to identify individual ‘morphospecies’. The foraminifera have an exceptional fossil record, spanning over 180 million years, and as microfossils provide a highly successful paleoproxy for dating sedimentary rocks and archiving past climate. Molecular studies, using the small subunit (SSU) ribosomal (r) RNA gene are used here to investigate the biogeographical distributions and phylogenetic relationships of the planktonic foraminifera. Biogeographical surveys of two markedly different areas of the global ocean, the tropical Arabian Sea, and the transitional/sub-polar North Atlantic Ocean, revealed significant genotypic variation within the planktonic foraminifera, with some genetic types being sequenced here for the first time. The foraminiferal genotypes displayed non-random geographical distributions, suggestive of distinct ecologies, giving insight into the possible mechanisms of diversification in these marine organisms. The ecological segregation of genetically divergent but morphologically cryptic genetic types could, however, have serious repercussions on their use as paleoproxies of past climate change. Phylogenetic analyses of the foraminifera based firstly on a partial ~1,000 bp terminal 3´ fragment of the SSU rRNA gene, and secondly on the ~3,000 bp almost complete gene supported the hypothesis of the polyphyletic origins of the planktonic foraminifera, which appear to be derived from up to 5 separate benthic ancestral lineages. The almost complete gene is sequenced here in the planktonic taxa for the first time, though amplification was problematic. In a first step to addressing a pressing need for new genetic markers to support data gained from the SSU rRNA gene, a culture system was established for the benthic foraminifera, in ...