Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island

The consequences of global warming on land ice masses are difficult to assess in detail, as two-dimensional glacier inventory data are still missing for many remote regions of the world. As the largest future temperature increase is expected to occur at high latitudes, the glaciers and ice caps in t...

Full description

Bibliographic Details
Published in:Annals of Glaciology
Main Authors: Paul, Frank, Kääb, Andreas
Format: Article in Journal/Newspaper
Language:English
Published: International Glaciological Society 2005
Subjects:
Online Access:https://www.zora.uzh.ch/id/eprint/77071/
https://www.zora.uzh.ch/77071
https://doi.org/10.3189/172756405781813087
Description
Summary:The consequences of global warming on land ice masses are difficult to assess in detail, as two-dimensional glacier inventory data are still missing for many remote regions of the world. As the largest future temperature increase is expected to occur at high latitudes, the glaciers and ice caps in the Arctic will be particularly susceptible to the expected warming. This study demonstrates the possibilities of space-borne glacier inventorying at a remote site on Cumberland Peninsula, a part of Baffin Island in Arctic Canada, thereby providing glacier inventory data for this region. Our approach combines Landsat ETM+ and Terra ASTER satellite data, an ASTER-derived digital elevation model (DEM) and Geographic Information System-based processing. We used thresholded ratio images from ETM+ bands 3 and 5 and ASTER bands 3 and 4 for glacier mapping. Manual delineation of Little Ice Age trimlines and moraines has been applied to calculate area changes for 225 glaciers, yielding an average area loss of 11%. A size distribution has been obtained for 770 glaciers that is very different from that for Alpine glaciers. Numerous three-dimensional glacier parameters were derived from the ASTER DEM for a subset of 340 glaciers. The amount of working time required for the processing has been tracked, and resulted in 5 min per glacier, or 7 years for all estimated 160 000 glaciers worldwide.