Bryophyte species composition over moisture gradients in the Windmill Islands, East Antarctica: development of a baseline for monitoring climate change impacts
Extreme environmental conditions prevail on the Antarctic continent and limit plant diversity to cryptogamic communities, dominated by bryophytes and lichens. Even small abiotic shifts, associated with climate change, are likely to have pronounced impacts on these communities that currently exist at...
Main Authors: | , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Research Online
2012
|
Subjects: | |
Online Access: | https://ro.uow.edu.au/scipapers/4732 https://ro.uow.edu.au/cgi/viewcontent.cgi?article=8075&context=scipapers |
Summary: | Extreme environmental conditions prevail on the Antarctic continent and limit plant diversity to cryptogamic communities, dominated by bryophytes and lichens. Even small abiotic shifts, associated with climate change, are likely to have pronounced impacts on these communities that currently exist at their physiological limit of survival. Changes to moisture availability, due to precipitation shifts or alterations to permanent snow reserves, will most likely cause greatest impact. In order to establish a baseline for determining the effect of climate change on continental Antarctic terrestrial communities and to better understand bryophyte species distributions in relation to moisture in a floristically important Antarctic region, this study surveyed finescale bryophyte patterns and turf water and nutrient contents along community gradients in the Windmill Islands, East Antarctica. The survey found that the Antarctic endemic, Schistidium antarctici, dominated the wettest habitats, Bryum pseudotriquetrum distribution spanned the gradient, whilst Ceratodon purpureus and Cephaloziella varians were restricted to the driest habitats. These patterns, along with knowledge of these species relative physiology, suggest the endemic Schistidium antarctici will be negatively impacted under a drying trend. This study provides a model for quantitative finescale analysis of bryophyte distributions in cryptogamic communities and forms an important reference site for monitoring impacts of climate change in Antarctica. |
---|