Seasonal patterns in fatty acids of Calanus hyperboreus (Copepoda, Calanoida) from Cumberland Sound, Baffin Island, Nunavut

The marine copepod Calanus hyperboreus accumulates large quantities of lipids and essential fatty acids during summer months in Northern oceans. However, few data exist regarding their winter fatty acid profiles, which could be informative regarding the use of lipids by C. hyperboreus to successfull...

Full description

Bibliographic Details
Published in:Marine Biology
Main Authors: McMeans, Bailey C., Arts, Michael T., Rush, Scott A., Fisk, Aaron T.
Format: Text
Language:unknown
Published: Scholarship at UWindsor 2012
Subjects:
Online Access:https://scholar.uwindsor.ca/glierpub/387
https://doi.org/10.1007/s00227-012-1889-6
Description
Summary:The marine copepod Calanus hyperboreus accumulates large quantities of lipids and essential fatty acids during summer months in Northern oceans. However, few data exist regarding their winter fatty acid profiles, which could be informative regarding the use of lipids by C. hyperboreus to successfully survive and reproduce during times of ice-cover and limited food. The present study compared fatty acids of C. hyperboreus between summer (August 2007 and 2008) and winter (early April 2008 and 2009) in Cumberland Sound, Canada. Summer samples from both years had significantly higher ∑polyunsaturated fatty acids and unsaturation indices (based on μg fatty acid mg dry tissue -1) than winter samples and separated on a principal component analysis due to higher 18:2n-6, 18:4n-3, and 20:5n-3, consistent with phytoplankton consumption. Winter C. hyperboreus had significantly higher ∑monounsaturated fatty acids (MUFA) versus summer samples and separated on the principal component analysis due to higher proportions of 16:1n-7, 20:1n-9, and 22:1n-9, suggesting they were not actively feeding. Based on the seasonal fatty acid comparison, C. hyperboreus was catabolizing specific fatty acids (e. g. 20:5n-3), conserving others (e. g. 22:6n-3), and maintaining or increasing biosynthesis of certain MUFA (e. g. 18:1n-9) during winter. These findings provide insight into the seasonal strategy of acquisition (summer) and utilization (winter) of specific fatty acids by a key Arctic organism and could become important for monitoring changes in fatty acids associated with decreased ice-cover duration due to climate warming. © 2012 Springer-Verlag.