In-plane dynamic behaviour of conventional and hybrid cable network systems on cable-stayed bridges

Stay cables on cable-stayed bridges are vulnerable to dynamic excitations due to their long flexible feature and low intrinsic damping. Connecting a vulnerable cable with the neighbouring ones through cross-ties to form a cable network is one of the commonly used field solutions. The current dissert...

Full description

Bibliographic Details
Main Author: Ahmad, Javaid
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: University of Windsor 2016
Subjects:
DML
Online Access:https://scholar.uwindsor.ca/etd/5795
https://scholar.uwindsor.ca/context/etd/article/6796/viewcontent/Ahmad_uwindsor_0115B_11354.pdf
Description
Summary:Stay cables on cable-stayed bridges are vulnerable to dynamic excitations due to their long flexible feature and low intrinsic damping. Connecting a vulnerable cable with the neighbouring ones through cross-ties to form a cable network is one of the commonly used field solutions. The current dissertation is dedicated to explore the in-plane dynamic behaviour of the conventional (cross-tie only) and hybrid (combined use of cross-ties and external dampers) cable networks used for controlling undesirable bridge stay cable vibrations. Their performances are evaluated based on the system in-plane stiffness, damping and the severity of local mode formation. A number of analytical models have been developed to analyze the in-plane modal response of conventional cable networks by gradually extending the model of a basic undamped two-cable network with a rigid cross-tie to include the cross-tie stiffness, the damping property of main cables and cross-tie, and more number of main cables and cross-tie lines into the formulation. A damping transfer phenomenon between cable network elements having different damping properties was observed. Two criteria, the degree of mode localization (DML) coefficient and the local mode cluster (LMC), were proposed to quantify the severity of local mode formation. Based on the proposed analytical models, key system parameters which dictate the dynamic behaviour of conventional cable networks were identified. A parametric study was conducted to explore their respective role in influencing the in-plane stiffness, the damping ratio and the local mode formation of cable networks. Analytical models of two-cable hybrid networks with different configurations have been developed to assess the system in-plane modal behaviour. A concept of “isoquant curve” was proposed to optimize the performance of a selected hybrid system mode. A state-of-the-art generalized approach was developed to derive analytical models of a more complex conventional or hybrid cable network from a relatively simple parent ...