Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth.

Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic ra...

Full description

Bibliographic Details
Published in:Journal of Insect Physiology
Main Authors: Chown, Steven L, Haupt, Tanya M, Sinclair, Brent J
Format: Article in Journal/Newspaper
Language:unknown
Published: Scholarship@Western 2016
Subjects:
Online Access:https://ir.lib.uwo.ca/biologypub/90
https://doi.org/10.1016/j.jinsphys.2015.11.010
https://ir.lib.uwo.ca/context/biologypub/article/1093/viewcontent/Chown_2016.pdf
Description
Summary:Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate - temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures. Here we examined whole animal metabolic rates, at 0 °C, 5 °C, 10 °C and 15 °C, in caterpillars of the sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae), following one week acclimations to 5 °C, 10 °C and 15 °C, and fluctuating temperatures of 0-10 °C, 5-15 °C, and 10-20 °C. Over the short term, temperature compensation was found following acclimation to 5 °C, but the effect size was small (3-14%). By comparison with caterpillars of 13 other lepidopteran species, no effect of temperature compensation was present, with the relationship between metabolic rate and temperature having a Q10 of 2 among species, and no effect of latitude on temperature-corrected metabolic rate. Fluctuating temperature acclimations for the most part had little effect compared with constant temperatures of the same mean value. Nonetheless, fluctuating temperatures of 5-15 °C resulted in lower metabolic rates at all test temperatures compared with constant 10 °C acclimation, in keeping with expectations from the literature. Absence of significant responses, or those of large effect, in metabolic rates in response to acclimation, may be a consequence of the unpredictable temperature variation over the short-term on sub-Antarctic Marion Island, to which P. marioni is endemic.