Paleoglaciological dynamics in northern Manitoba and the subglacial bed mosaic

During the last glacial maximum (LGM), some 20 ka ago, northern Manitoba was situated beneath 3 to 4.5 km of ice, on the outer fringe of a major ice spreading center of the Laurentide Ice Sheet. The region has also been affected by major paleoglaciological changes linked to multiple source areas, mi...

Full description

Bibliographic Details
Main Author: Trommelen, Michelle Suzanne
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: University of Waterloo 2013
Subjects:
Online Access:http://hdl.handle.net/10012/7645
Description
Summary:During the last glacial maximum (LGM), some 20 ka ago, northern Manitoba was situated beneath 3 to 4.5 km of ice, on the outer fringe of a major ice spreading center of the Laurentide Ice Sheet. The region has also been affected by major paleoglaciological changes linked to multiple source areas, migration of ice centres, and ice-sheet thickening/thinning over multiple glacial cycles. The net effect of this evolution is a very complex geological record, which has major implications for ice-sheet reconstructions and drift prospecting. Theory-based hypothesis for the region suggest initial advance-phase deposition was followed by either net-erosive or cold-based conditions for much of the glacial cycle. In contrast, observation-based reconstructions of ice-sheet behaviour consider the glacial landscape to have been predominately formed by near-complete overprinting during warm-based deglaciation. Some complexity has been recognized in sediment-landform records, but new insights into glacial dynamics and sediment-landscape evolution are needed. Systematic mapping (remote-sensing) and fieldwork (ice-flow indicators, till composition, ground truthing) in northeastern Manitoba has led to the recognition of spatio-temporal variability in landscape (streamlined-landform event-flowsets) and landform (micro and meso-scale ice-flow indicator records) and till composition inheritance. In particular, analysis of the spatio-temporal characteristics of the subglacial landscape led to the recognition of disjoint zones with internally-consistent assembly histories – termed glacial terrain zones (GTZ). These GTZ were then classified as (1) relict-glacial, (2) palimpsest, or (3) deglacial in nature. Generally, (1) is interpreted as pre-LGM, (2) may include pre-LGM terrain but also LGM to early deglaciation (ice margin still far from study area; ice sheet thinning phase) and (3) was formed during the final ice retreat phase. The resultant surface till composition within relict and palimpsest GTZs is a spatial mosaic interpreted to ...