Geochemical and microbiological characterization of effluent and pore water from low-sulfide content waste rock

Laboratory and field studies were completed to characterize the geochemistry and microbiology of drainage emanating from low-S content waste-rock test piles at the Diavik Diamond Mine (Diavik) from 2007 through 2010. The potential use of small-scale laboratory humidity-cell experiments to predict th...

Full description

Bibliographic Details
Main Author: Bailey, Brenda Lee
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: University of Waterloo 2013
Subjects:
Online Access:http://hdl.handle.net/10012/7410
Description
Summary:Laboratory and field studies were completed to characterize the geochemistry and microbiology of drainage emanating from low-S content waste-rock test piles at the Diavik Diamond Mine (Diavik) from 2007 through 2010. The potential use of small-scale laboratory humidity-cell experiments to predict the water quality from larger-scale field-based experiments also was examined. Waste rock at Diavik is segregated into three categories according to sulfide content: Type I (target concentration: < 0.04 wt. % S), Type II (target concentration: 0.04 to 0.08 wt. % S) and Type III (target concentration: > 0.08 wt. % S). Four high-density polyethylene tanks, 2 m in diameter by 2 m in height, were filled with and surrounded by waste rock (active zone lysimeters; AZLs) at the Diavik site to study the upper 2 m of the active zone within a waste-rock pile and to evaluate the quality of effluent released from waste rock with differing S contents (Type I AZLs: 0.014 wt. % S and Type III AZLs: 0.035 wt. % S). In addition, three waste-rock test piles also were constructed at Diavik, two uncovered test piles (Type I test pile: 0.035 wt. % S and Type III test pile: 0.053 wt. % S) and a third pile was constructed based on the mine-closure plan which consists of waste rock (Type III: 0.082 wt. % S) capped with a 1.5 m layer of till and a 3 m layer of Type I material (Covered test pile). Each test pile is underlain by a high-density polyethylene geomembrane that captures and directs water to outflow drains. Results show that the release and transport of blasting residuals could be used as a resident tracer, indicating the first flush of water through the AZLs and the test piles. Variations in concentrations of blasting residuals and the gradual rate of dissipation provide an indication of the heterogeneity of the distribution of blasting residuals and the relative contributions of water and solutes from different flow paths. As temperatures within the test piles increase in response to ambient air temperature increases, larger ...