Local ecosystem processes modulate ocean acidification and its effect on benthic foundation species

Thesis (Ph.D.)--University of Washington, 2018 Ocean acidification poses serious threats to coastal ecosystem services, yet few empirical studies have investigated how feedbacks from local ecological processes may modulate global trends of pH from rising atmospheric CO2. Just as microclimatic influe...

Full description

Bibliographic Details
Main Author: Lowe, Alexander Trent
Other Authors: Ruesink, Jennifer
Format: Thesis
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/1773/43307
Description
Summary:Thesis (Ph.D.)--University of Washington, 2018 Ocean acidification poses serious threats to coastal ecosystem services, yet few empirical studies have investigated how feedbacks from local ecological processes may modulate global trends of pH from rising atmospheric CO2. Just as microclimatic influences cause departures from long-term warming trends in temperature, local processes may decouple local marine environments from the increased anthropogenic CO2 that dissolves in seawater and reduces pH. Seawater pH has been shown to be an important factor regulating physiological processes of many aquatic organisms, including valuable aquaculture species like Pacific oysters. Understanding 1) whether long-term ocean acidification varies spatially due to local ecological processes, 2) which environmental factors or ecological processes drive variation in seawater pH, and 3) the effects of this pH variation on marine organisms are critical research needs for climate change adaptation and management of important marine resources. In this dissertation, I found that pH exhibits high variability across spatial and temporal scales in the Salish Sea, exhibiting location-specific long-term changes driven by differences in net ecosystem metabolism (Chapter 1). By mapping pH in important shellfish aquaculture regions of Washington state, I showed that shallow-water environments over tidal flats are more variable in pH than surface waters over deeper channels, associated with bentho-pelagic coupling of organic matter production and decomposition, in addition to characteristic physical changes of temperature and salinity up-estuary (Chapter 2). Using interactions with an autotrophic foundation species (eelgrass Zostera marina) along estuarine gradients, I found that growth of two species of oyster were most strongly positively correlated to differences in stable isotope and fatty acid biomarkers of food availability both from river to ocean along the estuarine gradient and in association with eelgrass (Chapter 3). Shell ...