The amplitude and origin of sea-level variability during the Pliocene epoch

Earth is heading towards a climate that last existed more than three million years ago (Ma) during the ‘mid-Pliocene warm period’¹, when atmospheric carbon dioxide concentrations were about 400 parts per million, global sea level oscillated in response to orbital forcing²,³ and peak global-mean sea...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Grant, G.R., Naish, T.R., Dunbar, G.B., Stocchi, P., Kominz, M.A., Kamp, Peter J.J., Tapia, C.A., McKay, R.M., Levy, R.H., Patterson, M.O.
Format: Article in Journal/Newspaper
Language:English
Published: Nature Publishing Group 2019
Subjects:
BED
Online Access:https://hdl.handle.net/10289/13468
https://doi.org/10.1038/s41586-019-1619-z
Description
Summary:Earth is heading towards a climate that last existed more than three million years ago (Ma) during the ‘mid-Pliocene warm period’¹, when atmospheric carbon dioxide concentrations were about 400 parts per million, global sea level oscillated in response to orbital forcing²,³ and peak global-mean sea level (GMSL) may have reached about 20 metres above the present-day value⁴,⁵. For sea-level rise of this magnitude, extensive retreat or collapse of the Greenland, West Antarctic and marine-based sectors of the East Antarctic ice sheets is required. Yet the relative amplitude of sea-level variations within glacial–interglacial cycles remains poorly constrained. To address this, we calibrate a theoretical relationship between modern sediment transport by waves and water depth, and then apply the technique to grain size in a continuous 800-metre-thick Pliocene sequence of shallow-marine sediments from Whanganui Basin, New Zealand. Water-depth variations obtained in this way, after corrections for tectonic subsidence, yield cyclic relative sea-level (RSL) variations. Here we show that sea level varied on average by 13 ± 5 metres over glacial–interglacial cycles during the middle-to-late Pliocene (about 3.3–2.5 Ma). The resulting record is independent of the global ice volume proxy³ (as derived from the deep-ocean oxygen isotope record) and sea-level cycles are in phase with 20-thousand-year (kyr) periodic changes in insolation over Antarctica, paced by eccentricity-modulated orbital precession⁶ between 3.3 and 2.7 Ma. Thereafter, sea-level fluctuations are paced by the 41-kyr period of cycles in Earth’s axial tilt as ice sheets stabilize on Antarctica and intensify in the Northern Hemisphere³, ⁶. Strictly, we provide the amplitude of RSL change, rather than absolute GMSL change. However, simulations of RSL change based on glacio-isostatic adjustment show that our record approximates eustatic sea level, defined here as GMSL unregistered to the centre of the Earth. Nonetheless, under conservative assumptions, our estimates ...