Global 3-D Simulations of the Triple Oxygen Isotope Signature Δ17O in Atmospheric CO2

The triple oxygen isotope signature Δ17O in atmospheric CO2, also known as its “17O excess,” has been proposed as a tracer for gross primary production (the gross uptake of CO2 by vegetation through photosynthesis). We present the first global 3-D model simulations for Δ17O in atmospheric CO2 togeth...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Koren, Gerbrand, Schneider, Linda, van der Velde, Ivar R., van Schaik, Erik, Gromov, Sergey S., Adnew, Getachew A., Mrozek Martino, Dorota J., Hofmann, Magdalena E.G., Liang, Mao Chang, Mahata, Sasadhar, Bergamaschi, Peter, van der Laan-Luijkx, Ingrid T., Krol, Maarten C., Röckmann, Thomas, Peters, Wouter
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
Online Access:https://research.wur.nl/en/publications/global-3-d-simulations-of-the-triple-oxygen-isotope-signature-δsu
https://doi.org/10.1029/2019JD030387
Description
Summary:The triple oxygen isotope signature Δ17O in atmospheric CO2, also known as its “17O excess,” has been proposed as a tracer for gross primary production (the gross uptake of CO2 by vegetation through photosynthesis). We present the first global 3-D model simulations for Δ17O in atmospheric CO2 together with a detailed model description and sensitivity analyses. In our 3-D model framework we include the stratospheric source of Δ17O in CO2 and the surface sinks from vegetation, soils, ocean, biomass burning, and fossil fuel combustion. The effect of oxidation of atmospheric CO on Δ17O in CO2 is also included in our model. We estimate that the global mean Δ17O (defined as Δ17O = ln(δ17O+1)−λRL·ln(δ18O+1) with λRL = 0.5229) of CO2 in the lowest 500 m of the atmosphere is 39.6 per meg, which is ∼20 per meg lower than estimates from existing box models. We compare our model results with a measured stratospheric Δ17O in CO2 profile from Sodankylä (Finland), which shows good agreement. In addition, we compare our model results with tropospheric measurements of Δ17O in CO2 from Göttingen (Germany) and Taipei (Taiwan), which shows some agreement but we also find substantial discrepancies that are subsequently discussed. Finally, we show model results for Zotino (Russia), Mauna Loa (United States), Manaus (Brazil), and South Pole, which we propose as possible locations for future measurements of Δ17O in tropospheric CO2 that can help to further increase our understanding of the global budget of Δ17O in atmospheric CO2.