Development of a broodstock diet to improve developmental competence of embryos in European eel, Anguilla anguilla

We examined the effect of dietary arachidonic acid (ARA) and eicosapentaenoic acid (EPA) on the production of embryos and hatched larvae in the European eel, Anguilla anguilla. Two diets with high and intermediate levels of ARA and low and intermediate levels of EPA (Feed 1: ARA 1.9%, EPA 4.2%; Feed...

Full description

Bibliographic Details
Published in:Aquaculture Nutrition
Main Authors: Støttrup, J.G., Tomkiewicz, J., Jacobsen, C., Heinsbroek, L.T.N.
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Online Access:https://research.wur.nl/en/publications/development-of-a-broodstock-diet-to-improve-developmental-compete
https://doi.org/10.1111/anu.12299
Description
Summary:We examined the effect of dietary arachidonic acid (ARA) and eicosapentaenoic acid (EPA) on the production of embryos and hatched larvae in the European eel, Anguilla anguilla. Two diets with high and intermediate levels of ARA and low and intermediate levels of EPA (Feed 1: ARA 1.9%, EPA 4.2%; Feed 2: ARA 1.2%, EPA 5.1% of total fatty acids) were tested against a commercial diet (DE: ARA: 0.5%, EPA: 8.2% of total fatty acids). After 24 weeks of feeding, ARA levels in the muscles and ovaries increased to 0.9% and 1.3% of total fatty acids, respectively, in Feed 1 and were significantly higher than in Feed 2 and DE. Female broodstock was not fed during hormonal treatment to induce vitellogenesis and ovulation. EPA levels in females fed the test diets decreased in the both muscle and ovary and were significantly lower in eggs from females fed Feed 1. The highest percentage of stripped females, producing viable eggs and larvae, were those females fed the highest dietary ARA levels (Feed 1). The level of lipid peroxidation products in eggs was similar among treatment, indicating that the lowest dietary levels of vitamin C and vitamin E were sufficient. In the unfertilized eggs, ARA levels were also highest (1.1% of total fatty acids) in the diet with highest ARA levels (Feed 1).