Development of genomic resources for ornamental lilies (Lilium L.)

Lily (Lilium L.) is a perennial bulbous ornamental, belonging to subclass Monocotyledonae and family Liliaceae. Lily, according to statistics of Dutch auctions, is the fifth most important cut flower and the second in flower bulbs based on acreage. This species has been extensively used for cytogene...

Full description

Bibliographic Details
Main Author: Shahin, A.
Other Authors: Visser, Richard, van Tuyl, Jaap, Arens, Paul
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2012
Subjects:
Online Access:https://research.wur.nl/en/publications/development-of-genomic-resources-for-ornamental-lilies-lilium-l
Description
Summary:Lily (Lilium L.) is a perennial bulbous ornamental, belonging to subclass Monocotyledonae and family Liliaceae. Lily, according to statistics of Dutch auctions, is the fifth most important cut flower and the second in flower bulbs based on acreage. This species has been extensively used for cytogenetic studies, but molecular genetic studies are limited. The heterogenic nature and the very complex and huge genome (36 Gb) of lily might be the reason for this. To improve the efficiency of breeding and selection in this species, and set up the basis for genetic studies in Lilium, genomic resources are needed. Next generation sequencing (NGS) technology (454 pyro-sequencing) was used to sequence the transcriptomes (RNA-seq) of four lily cultivars: ‘Connecticut King’, ‘White Fox’, ‘Star Gazer’, and Trumpet that belong to the four most important hybrid groups: Asiatic, Longiflorum, Oriental, and Trumpet respectively. Successfully, 52,172 unigenes with an average length of 555 bp were developed and used for a wide range of genetic and genomic studies: SNP marker identification for genetic mapping, gene annotation, and comparative genomic studies. Combining NGS with SNP genotyping techniques to accelerate genetic studies is of considerable interest in different species. In this study, thousands of SNPs out of the 52,172 lily unigenes were identified. Genotyping technique KASPar (KBiosciences competitive Allele Specific PCR) was used to genotype two lily mapping populations: ‘LA (L. longiflorum ‘White Fox’ x Asiatic hybrid ‘Connecticut King’) and AA (‘Connecticut King’ x ‘Orlito’) using 225 SNP markers selected from ‘Connecticut King’ unigenes. Genotyping success rate was 75.5% (170 SNP markers worked), polymorphic SNP rate was 45% (102 SNP markers), and mapped SNP marker rate was 42% (94 SNP mapped) in LA population and 38% (85 SNP mapped) in AA population. Thus, we validated a subset of the putative SNP makers and showed the usability of this type of markers to improve genetic maps for complex genomes like that of lily. ...