Nutrient limitation and nutrient-driven shifts in plant species composition in a species-rich fen meadow

Question: We studied the development and persistence of the effects of nutrient pulses on biomass production and species composition in a fen meadow. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Single pulse fertilization with N and P in a factorial design on an undrained centr...

Full description

Bibliographic Details
Published in:Journal of Vegetation Science
Main Authors: van der Hoek, D., van Mierlo, A.J.E.M., van Groenendael, J.M.
Format: Article in Journal/Newspaper
Language:English
Published: 2004
Subjects:
Online Access:https://research.wur.nl/en/publications/nutrient-limitation-and-nutrient-driven-shifts-in-plant-species-c
https://doi.org/10.1111/j.1654-1103.2004.tb02276.x
Description
Summary:Question: We studied the development and persistence of the effects of nutrient pulses on biomass production and species composition in a fen meadow. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Single pulse fertilization with N and P in a factorial design on an undrained central and a drained margin site in a species-rich fen meadow (Cirsio dissecti-Molinietum). Biomass production and species composition were monitored during four years. Results: At the central site, N addition boosted biomass production, but only during one year. The species composition was not changed. P fertilization increased the biomass production and changed the species composition from a vegetation dominated by Carex panicea to a grassland community with abundant Holcus lanatus, but not before the second year. At the margin site, P fertilization changed the species composition in a similar way, but biomass production was not increased. N fertilization had no effect. At both sites the P induced shift in species composition persisted for four years although the P effect declined during the experiment. Conclusions: The biomass responses show that N was limiting in the central site. Another nutrient, besides N and P (probably K) must have been limiting in the marginal site. The fast decline of the N effect on biomass is ascribed to increased denitrification and biomass removal. The delay in the P effect on biomass and species composition and the persistence of the P effect on species composition are ascribed to fast immobilisation and subsequent slow release of fertilizer P in the peat soil. Recurrence of the P pulses is expected to cause permanent changes in species composition