Placing Greenland ice sheet ablation measurements in a multi-decadal context

In recent years, the Greenland ice sheet has been losing mass at an average rate of 262 ± 21 Gt yr–1 (2007–2011; Andersen et al. 2015). Part of this mass loss was due to increases in melt, reducing the surface mass budget (Enderlin et al. 2014). Also, the acceleration of many marine-terminating outl...

Full description

Bibliographic Details
Main Authors: van As, Dirk, Fausto, Robert S., Cappelen, John, van de Wal, Roderik S. W., Braithwaite, Roger J., Machguth, Horst
Other Authors: Sub Dynamics Meteorology, Marine and Atmospheric Research
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/428314
Description
Summary:In recent years, the Greenland ice sheet has been losing mass at an average rate of 262 ± 21 Gt yr–1 (2007–2011; Andersen et al. 2015). Part of this mass loss was due to increases in melt, reducing the surface mass budget (Enderlin et al. 2014). Also, the acceleration of many marine-terminating outlet glaciers increased the dynamic mass loss (Rignot et al. 2008). Both mass-loss mechanisms are linked to recent increases in atmospheric and oceanic temperatures (Dutton et al. 2015). For instance, in summer 2012 Greenland experienced exceptionally warm atmospheric conditions, causing nearly the entire ice-sheet surface to melt for two periods of several days (Nghiem et al. 2012) and contributing to the largest annual ice-sheet mass loss on record (Khan et al. 2015). This is in contrast to a return to more average conditions in 2015 (Tedesco et al. in press).