Challenges in modeling the energy balance and melt in the percolation zone of the Greenland ice sheet.

Increased surface melt in the percolation zone of the Greenland ice sheet causes significant changes in the firn structure, directly affecting the amount and timing of meltwater runoff. Here we force an energy-balance model with automatic weather stations data at two sites in the percolation zone of...

Full description

Bibliographic Details
Main Authors: Covi, F., Hock, Regine, Reijmer, Carleen
Other Authors: Sub Dynamics Meteorology, Marine and Atmospheric Research
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/427255
Description
Summary:Increased surface melt in the percolation zone of the Greenland ice sheet causes significant changes in the firn structure, directly affecting the amount and timing of meltwater runoff. Here we force an energy-balance model with automatic weather stations data at two sites in the percolation zone of southwest Greenland ( and 2360 m a.s.l.) between spring and fall . Extensive model validation and sensitivity analysis reveal that the skin layer formulation used to compute the surface temperature by closing the energy balance leads to a consistent overestimation of melt by more than a factor of two or three depending on the site. In contrast, model results match the observations well when the model is forced by observed surface temperatures; however, unexplained residuals in the energy balance occur. The sensible and ground heat flux differ markedly in the two simulations accounting largely for the difference in modeled melt amounts. This indicates that the energy available for melt is highly sensitive to small changes in surface temperature. Thus, regional climate models that also use the skin layer formulation may have a bias in surface temperature and melt energy in the percolation zone of the ice sheet.