Absence of a strong, deep-reaching Antarctic Circumpolar Current zonal flow across the Tasmanian gateway during the Oligocene to early Miocene

The vigorous eastward flow of the Antarctic Circumpolar Current (ACC) connects all major ocean basins and plays a prominent role in the transport of heat, carbon and nutrients around the globe. However, the establishment of a deep circumpolar flow, similar to the present-day ACC, remains controversi...

Full description

Bibliographic Details
Main Authors: Evangelinos, Dimitris, Escutia, Carlota, van de Flierdt, Tina, Valero, Luis, Flores, José Abel, Harwood, David M., Hoem, Frida S., Bijl, Peter, Etourneau, Johan, Kreissig, Katharina, Nilsson-Kerr, Katrina, Holder, Liam, López-Quirós, Adrián, Salabarnada, Ariadna
Other Authors: Marine palynology and palaeoceanography, Marine Palynology
Format: Article in Journal/Newspaper
Language:English
Published: 2022
Subjects:
ACC
CDW
Online Access:https://dspace.library.uu.nl/handle/1874/417995
Description
Summary:The vigorous eastward flow of the Antarctic Circumpolar Current (ACC) connects all major ocean basins and plays a prominent role in the transport of heat, carbon and nutrients around the globe. However, the establishment of a deep circumpolar flow, similar to the present-day ACC, remains controversial thereby obscuring our understanding of its climatic impact. Deciphering the chemical composition of Circumpolar Deep Water (CDW) within the ACC can provide critical insights about its development and evolution. Here we present new fossil fish teeth/bone debris neodymium isotope (εNd) records from Deep Sea Drilling Project (DSDP) Sites 278 and 274 in the southwest Pacific Ocean, with the aim to trace changes in deep water masses across the Tasmanian Gateway between the early Oligocene and early Miocene (~ 33–22 Ma). Site 274 provides the first Nd isotope record proximal to the Ross Sea during the Oligocene (33.5–23.4 Ma). Its Nd isotope composition shows excursions to very radiogenic values, εNd(t) = −3.1 and εNd(t)= − 3.7, at 33.5 Ma and 23.8 Ma, respectively, in response to major steps in Antarctic ice sheet expansion. A shift to lower, more unradiogenic εNd(t) values between 29.7 and 29.1 Ma is linked to an increased influence of proto-CDW upwelling at the site. In contrast, the Nd isotope record from Site 278 in the southern Emerald Basin shows little variability (εNd(t) = −6.0 to −6.7) throughout the Oligocene and early Miocene (30.9–21.8 Ma). Comparison with published data north of the ACC path, demonstrates the presence of two deep water masses in the South Pacific prior to the inferred onset of the ACC (33–30 Ma), one occupying depths between ~2500 and 3000 m (εNd(t)= ~ −3 to −5) and a deep/bottom water mass (> 3000 m) with a more unradiogenic Nd isotope composition (εNd(t)= ~ −6). Site 278 located close to the proto-polar front (proto-PF) indicates that following the inferred onset of the ACC, deep waters bathing the southern Emerald Basin remained more radiogenic in the Southwest Pacific compared to ...