Pleistocene ice-rafted debris events recorded at the Agulhas Plateau - indicators of intermittent Indian-Atlantic gateway closure

Interocean exchange of heat and salt around South Africa - the so called 'Agulhas Leakage' - is thought to be a key link in the maintenance of the Atlantic meridional overturning circulation (AMOC). It takes place at the Agulhas Retroflection, largely by the intermittent shedding of enormo...

Full description

Bibliographic Details
Main Authors: Ziegler, M., Hall, I. R., Siret, P. J., Zahn, R.
Other Authors: non-UU output of UU-AW members
Format: Article in Journal/Newspaper
Language:English
Published: 2012
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/396233
Description
Summary:Interocean exchange of heat and salt around South Africa - the so called 'Agulhas Leakage' - is thought to be a key link in the maintenance of the Atlantic meridional overturning circulation (AMOC). It takes place at the Agulhas Retroflection, largely by the intermittent shedding of enormous rings that penetrate into the South Atlantic Ocean (Lutjeharms, 1996, Biastoch et al., 2008; Beal et al., 2011). Recent palaeoceanographic studies suggest that variability in the latitudinal position of the subtropical front (STF) in the Southern Ocean, act as a gatekeeper for the Agulhas retroflection and moreover, that a variable northward migration of the STF potentially modulated the severity of glacial periods by altering the amount of Agulhas leakage with consequences for the AMOC (Bard and Rickaby, 2009). Here we present a high-resolution record of ice rafted debris (IRD) from the southern Agulhas Plateau (sediment core MD02-2588, 41°19,90 S and 25°49,70 E, 2907 m water depth) covering the last 350,000 years. We find distinct millennial scale events with high abundances of IRD in the sediments. Scanning-electron microscope analysis of individual grains shows a wide range of morphologies, with a high degree of angularity being a dominant feature, with surface microfeatures (linear fractures, grooves and troughs) that are typical for glacial origin and transport. We interpret these IRD events as indicators for a northward shift of the Southern Ocean frontal system, thereby allowing sufficient cooling and iceberg survivability as far north as the Agulhas Plateau. Our proxy record suggests significant millennial scale variability of the frontal movements throughout the last three glacial cycles. Largest IRD peaks occur during marine isotope stage 8 (~300 ka BP) and hence during a period for which an extreme northward shift in the STF has been identified previously (Bard and Rickaby, 2009). We compare our IRD record with records of millennial scale climate variability in the North Atlantic (McManus et al., 1999, Martrat et ...