The key role of global solid-Earth processes in preconditioning Greenland's glaciation since the Pliocene

After >500 Ma of absence, major Northern Hemisphere glaciations appeared during the Plio-Pleistocene, with Greenland leading other northern areas. Here, we propose that three major solid-Earth processes underpinned build-up of the Greenland ice-sheet. First, a mantle-plume pulse, responsible for...

Full description

Bibliographic Details
Main Authors: Steinberger, Bernhard, Spakman, Wim, Japsen, Peter, Torsvik, Trond H.
Other Authors: Mantle dynamics & theoretical geophysics
Language:English
Published: 2015
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/309095
Description
Summary:After >500 Ma of absence, major Northern Hemisphere glaciations appeared during the Plio-Pleistocene, with Greenland leading other northern areas. Here, we propose that three major solid-Earth processes underpinned build-up of the Greenland ice-sheet. First, a mantle-plume pulse, responsible for the North Atlantic Igneous Province at ~60 Ma, regionally thinned the lithosphere. Younger plume pulses led to uplift, which accelerated at ~5 Ma, lifting the parts of the East Greenland margin closest to Iceland to elevations of more than 3 km above sea level. Second, plate-tectonic reconstruction shows a ~6° northward component of Greenland motion relative to the mantle since ~60 Ma. Third, a concurrent northward rotation of the entire mantle and crust towards the pole, dubbed True Polar Wander (TPW), contributed an additional ~12° change in latitude. These global geodynamic processes preconditioned Greenland to sustain long-term glaciation, emphasizing the role of solid-Earth processes in driving long-term global climatic transitions.