Response of the Atlantic overturning circulation to South Atlantic sources of buoyancy

The heat and salt input from the Indian to Atlantic Oceans by Agulhas Leakage is found to influence the Atlantic overturning circulation in a low-resolution Ocean General Circulation Model. The model used is the Hamburg Large-Scale Geostrophic (LSG) model, which is forced by mixed boundary condition...

Full description

Bibliographic Details
Main Authors: Weijer, W., Ruijter, W.P.M. de, Sterl, A., Drijfhout, S.
Format: Report
Language:English
Published: 2001
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/2604
Description
Summary:The heat and salt input from the Indian to Atlantic Oceans by Agulhas Leakage is found to influence the Atlantic overturning circulation in a low-resolution Ocean General Circulation Model. The model used is the Hamburg Large-Scale Geostrophic (LSG) model, which is forced by mixed boundary conditions. Agulhas Leakage is parameterized by sources of heat and salt in the upper South Atlantic Ocean, that extend well into the intermediate layers. It is shown that the model’s overturning circulation is sensitive to the applied sources of heat and salt. The response of the overturning strength to changes in the source amplitudes is mainly linear, interrupted once by a stepwise change. The South Atlantic buoyancy sources influence the Atlantic overturning strength by modifying the basin-scale meridional density and pressure gradients. The nonlinear, stepwise response is caused by abrupt changes in the convective activity in the northern North Atlantic. Two additional experiments illustrate the adjustment of the overturning circulation upon sudden introduction of heat and salt sources in the South Atlantic. The North Atlantic overturning circulation responds within a few years after the sources are switched on. This is the time it takes for barotropic and baroclinic Kelvin waves to reach the northern North Atlantic. The advection of the anomalies takes 3 decades to reach the northern North Atlantic. The model results give support to the hypothesis that the re-opening of the Agulhas Gap at the end of the last ice-age, as indicated by palaeoclimatological data, may have stimulated the coincident strengthening of the Atlantic overturning circulation.