Numerical simulations of cyclic behaviour in the Parallel Ice Sheet Model (PISM)

Numerical experiments are conducted on a synthetic topography with a three-dimensional thermomechanically coupled ice-sheet model, the Parallel Ice Sheet Model (PISM). Within the model, combined stress balances are connected to evolving thermodynamics and hydrology. The sensitivity of cyclic behavio...

Full description

Bibliographic Details
Main Authors: van Pelt, W.J.J., Oerlemans, J.
Other Authors: Marine and Atmospheric Research, Sub Dynamics Meteorology
Format: Article in Journal/Newspaper
Language:English
Published: 2012
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/257544
Description
Summary:Numerical experiments are conducted on a synthetic topography with a three-dimensional thermomechanically coupled ice-sheet model, the Parallel Ice Sheet Model (PISM). Within the model, combined stress balances are connected to evolving thermodynamics and hydrology. The sensitivity of cyclic behaviour to changes in sliding-law parameters and the climate input is studied. Multiple types of oscillations were found, with strong variations in both amplitude and frequency. A physical description is given, in which these variations and transitions from one oscillation type to another are linked to the interplay of stresses, heat transport and hydrological processes. High-frequency oscillations (period 114–169 years), which are shown to have a major impact on ice velocities and a small effect on the ice volume, are related to variations in the water distribution at the base. Low-frequency cycles (period 1000+ years), which have a major impact on both velocities and ice volume, are linked to changes in the thermal regime. Oscillation characteristics are shown to be strongly sensitive to changes in sliding-law parameters and the prescribed surface temperature and mass balance. Incorporating a surface-height dependence of the mass balance is shown to provide an additional feedback, which may induce longperiod oscillations.