Simulated Internal Storage Buildup, Release, and Runoff from Greenland Ice Sheet at Kangerlussuaq, West Greenland

This study focused on simulated glacier surface conditions (simulated Surface Melt and liquid Precipitation available for supra-, en-, sub-, and proglacial flow processes [after vertical percolation and potential storage within the snowpack] [henceforth SMP]), internal water storage and release, and...

Full description

Bibliographic Details
Main Authors: Mernild, S. H., Liston, G. E., van den Broeke, M.R.
Other Authors: Marine and Atmospheric Research, Sub Dynamics Meteorology
Format: Article in Journal/Newspaper
Language:English
Published: 2012
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/242382
Description
Summary:This study focused on simulated glacier surface conditions (simulated Surface Melt and liquid Precipitation available for supra-, en-, sub-, and proglacial flow processes [after vertical percolation and potential storage within the snowpack] [henceforth SMP]), internal water storage and release, and runoff from the Kangerlussuaq drainage area of the Greenland Ice Sheet (GrIS), West Greenland, for the period 2006/2007 to 2007/2008. GrIS winter accumulation and summer ablation processes, including SMP, was simulated on both daily and hourly time steps. Using hourly meteorological driving data produced more realistic meteorological conditions instead of daily-averaged data, in relation to snow and melt threshold surface processes, and produced 9–17% higher annual cumulative SMP. The difference between simulated SMP and observed catchment runoff showed a decreasing lag time through the summer, and a drainage system storage buildup through approximately June and early July of up to 0.29 3 109 m3, and a storage release through approximately late July and August of up to 0.25 3 109 m3. The simulated total Kangerlussuaq SMP for 2006/2007 and 2007/2008, indicated a reduction of 30%. This reduction in SMP occurred simultaneously with the reduction in the overall pattern of satellite-derived GrIS surface melt from 2007 to 2008.