Elevation changes measured on Svalbard glaciers and ice caps from airborne laser data

Precise airborne laser surveys were conducted during spring in 1996 and 2002 on 17 ice caps and glaciers in the Svalbard archipelago covering the islands of Spitsbergen and Nordaustlandet. We present the derived elevation changes. Lower-elevation glaciers in south Spitsbergen show the largest thinni...

Full description

Bibliographic Details
Main Authors: Oerlemans, J., Bamber, J.L., Krabill, W., Raper, V., Dowdeswell, J.A.
Format: Article in Journal/Newspaper
Language:English
Published: 2005
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/22699
Description
Summary:Precise airborne laser surveys were conducted during spring in 1996 and 2002 on 17 ice caps and glaciers in the Svalbard archipelago covering the islands of Spitsbergen and Nordaustlandet. We present the derived elevation changes. Lower-elevation glaciers in south Spitsbergen show the largest thinning rates of ~0.5ma–1, while some of the higher, more northerly ice caps appear to be close to balance. The pattern of elevation change is complex, however, due to several factors including glacier aspect, microclimatological influences and the high natural annual variability in local accumulation and ablation rates. Anomalous changes were observed on Fridtjovbreen, which started surging in 1996, at the start of the measurement period. On this glacier, thinning (of > 0.6ma–1)was observed in the accumulation area, coincident with thickening at lower elevations. Asymmetric thinning was found on two ice caps on Nordaustlandet, with the largest values on the eastern side of Vestfonna but the western slopes of Vegafonna. The mean elevation change for all ice masses was –0.19ma–1 w.e., which is 1.6 times the net mass-balance value determined for the last 30 years. Using mass-balance sensitivity estimates for Svalbard suggests that the implied increase in negative balance is linked to warmer air temperatures in the late 1990s. Multiple linear regression suggests that mass balance is most closely correlated with latitude, rather than mean altitude or longitude.