Assessment of the surface mass balance along the K-transect (Greenland ice sheet) from satellite-derived albedos

This paper explores the potential of using satellite-derived albedos to estimate the surface mass balance of the Kangerlussuaq transect (K-transect; Greenland ice sheet). We first retrieved surface albedos from Advanced Very High Resolution Radar data by using, among other techniques, a new cloud de...

Full description

Bibliographic Details
Main Authors: Oerlemans, J., Greuell, W.
Format: Article in Journal/Newspaper
Language:English
Published: 2005
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/22698
Description
Summary:This paper explores the potential of using satellite-derived albedos to estimate the surface mass balance of the Kangerlussuaq transect (K-transect; Greenland ice sheet). We first retrieved surface albedos from Advanced Very High Resolution Radar data by using, among other techniques, a new cloud detection algorithm based on the relation between brightness temperature and surface elevation. We then computed the ‘satellite-derived mass balance’ (bsat) from the mean albedo for the transect, by taking fixed values for atmospheric transmissivity and the longwave and turbulent fluxes. We found that bsat explains 71% of the variance in 13 years of stake mass-balance measurements (bm). Our method also provides good estimates of the magnitude of the interannual variability in bm. The performance of the method degrades considerably without correction for anisotropic reflection at the surface and recalibration of the satellite sensors with dry snow at the top of the ice sheet. Sensitivity tests indicate that the method’s performance is hardly sensitive to uncertainties in parameters. Therefore, we expect that the method could be successfully applied on other glaciers and parts of ice sheets and ice caps, especially where accumulation rates are relatively small. We show that the investigated method performs best just below the mean equilibrium-line altitude.