Reconstruction of the mean specific balance of Vatnajokull (Iceland) with a seasonal sensitivity characteristic

We present a Seasonal Sensitivity Characteristic (SSC) of Vatnajökull (Iceland), which consists of the sensitivity of the mean specific mass balance to monthly perturbations in temperature and precipitation. The climate in Iceland is predominantly maritime (high precipitation) although often the pol...

Full description

Bibliographic Details
Main Authors: Ruyter de Wildt, Martijn Sybren de, Klok, E.J., Oerlemans, J.
Format: Article in Journal/Newspaper
Language:English
Published: 2003
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/22696
Description
Summary:We present a Seasonal Sensitivity Characteristic (SSC) of Vatnajökull (Iceland), which consists of the sensitivity of the mean specific mass balance to monthly perturbations in temperature and precipitation. The climate in Iceland is predominantly maritime (high precipitation) although often the polar air mass influences the area. This results in temperature sensitivities that are high in summer and nearly zero during the winter months. In contrast, precipitation sensitivities are high in winter and low in summer. We use the SSC of Vatnajökull as a reduced mass balance model, with which we reconstruct the mass balance of Vatnajökull since 1825. The reduced model shows that changes in temperature and precipitation like the ones observed both have a significant impact upon the mass balance. The reconstructed mass balance records for two Icelandic glaciers correlate very well with mass balance records that are extracted from length records with a linear inverse model. This places confidence in both the reduced (forward) mass balance model and in the inverse model, although the forward method produces larger mass balance variations than the inverse method. For the south of Vatnajökull we find that after 1900, the length record is well explained by temperature variations alone, while another Icelandic glacier (Sólheimajökull) was also influenced by precipitation variations.