Global change during the Paleocene-Eocene thermal maximum

Proxy data indicate that atmospheric CO2 concentrations expected for the next centuries have not been equaled since the early Paleogene, approximately 66 to 45 Million years (Ma) ago. The early Paleogene global climate appears to have been substantially warmer than that of present day, likely in res...

Full description

Bibliographic Details
Main Author: Sluijs, A.
Other Authors: Lotter, A.F., Brinkhuis, H.
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2006
Subjects:
Online Access:https://dspace.library.uu.nl/handle/1874/12527
Description
Summary:Proxy data indicate that atmospheric CO2 concentrations expected for the next centuries have not been equaled since the early Paleogene, approximately 66 to 45 Million years (Ma) ago. The early Paleogene global climate appears to have been substantially warmer than that of present day, likely in response to high greenhouse gas concentrations. Understanding of the impact of such ‘greenhouse’ conditions on early Paleogene global climate is vital to identify and quantify present and future climate feedbacks related to rising atmospheric carbon concentrations. This thesis is specifically focused on global change that occurred during a brief period of extreme global warming called the Paleocene-Eocene thermal maximum (PETM), approximately 55.5 Million years ago. The PETM, which characterizes the Paleocene-Eocene boundary, associated with this warming is a negative 2.5-6 ‰ stable carbon isotope (δ13C) excursion (CIE), evidencing the fast injection of 12C-enriched carbon in the form of CO2 or CH4 into the global exogenic carbon pool. The apparent conjunction between the carbon input and warming has fuelled the hypothesis that the increased atmospheric CO2 and/or CH4 concentrations caused an enhanced greenhouse effect at the PETM, superimposed on the already high greenhouse gas concentrations of the earliest Paleogene. The duration of the negative δ13C excursion and the subsequent recovery is in the order of 170 thousand years. The carbon injection at the PETM led to extreme ocean acidification, which requires a larger injection of carbon than can be explained by the previously assumed dissociation of submarine methane hydrates. Based on the newly discovered Elmo horizon it is now known that the PETM was not a unique event but the most severe of multiple ‘hyperthermal’ events during the late Paleocene and early Eocene. This strongly suggests an endogenic cause for these phases of rapid global warming. Results from sediment cores from the Arctic Ocean and the New Jersey shelf provide a better constraint on the very high ...