Hydrocarbon biodegradation potential in environmental bacterial metagenome

Hydrocarbon pollution in marine environments present an acute problem which is aggravated by cold temperatures. This is especially relevant in important environmental and economic northern regions such as the Barents Sea. The Barents Sea region has become the focus of oil industries from Russia and...

Full description

Bibliographic Details
Main Author: Caro Pascual, Alicia
Format: Master Thesis
Language:English
Published: UiT Norges arktiske universitet 2020
Subjects:
Online Access:https://hdl.handle.net/10037/20579
Description
Summary:Hydrocarbon pollution in marine environments present an acute problem which is aggravated by cold temperatures. This is especially relevant in important environmental and economic northern regions such as the Barents Sea. The Barents Sea region has become the focus of oil industries from Russia and Norway, incrementing the risk of hydrocarbon pollution. Bioremediation is a cost-effective and environmentally sound method to remove hydrocarbon pollution. To study the bioremediation potential of native bacteria from a chronically oil polluted region of the Barents Sea a study was done in the Murmansk seaport (Kola Bay, 68°58′00′′ N, 33°05′00′′ E) analyzing the composition of the bacterial community. This present work aims to do a deeper study of that bacterial community through a metagenomic fosmid library, a selective hydrocarbon-rich medium and bioinformatic analysis. A metagenomic fosmid library was constructed with the environmental DNA, the fosmid clones were transformed in Escherichia coli cells and cultivated in minimal media with concentrations 0.05%, 0.5% and 1% of diesel or crude oil. Ten colonies were selected, sequenced, and subsequently analyzed with the software Geneious 2020.2.2. BLAST searches and other bioinformatic tools were conducted in every Open Reading Frame of the 10 colonies, revealing new links between native bacteria and hydrocarbon degradation as well as promising enzymes for hydrocarbon bioremediation. This work sets the ground for further studies on functional metagenomic analyses with fosmid libraries and further studies with the novel bacterial species and enzymes linked to hydrocarbon biodegradation.